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Abstract

Developing robust and interpretable vision systems is
a crucial step towards trustworthy artificial intelligence.
One promising paradigm is to design transparent struc-
tures, e.g., geometric invariance, for fundamental represen-
tations. However, such invariants exhibit limited discrim-
inability, limiting their applications in larger-scale tasks.

For this open problem, we conduct a systematic investi-
gation of hierarchical invariance, exploring this topic from
theoretical, practical, and application perspectives.

At the theoretical level, we show how to construct dis-
criminative invariants with a Convolutional Neural Net-
work (CNN)-like hierarchical architecture, yet in a fully
transparent manner. The general blueprint, specific def-
initions, invariant properties, and numerical implementa-
tions are provided. At the practical level, we discuss how
to customize this transparent framework into a given task.
With the over-completeness, discriminative features w.r.t.
the task can be adaptively formed in a Neural Architecture
Search (NAS)-like manner. We demonstrate the above argu-
ments with accuracy, invariance, and efficiency results on
laboratory-style classification experiments. Furthermore,
at the application level, our representations are explored in
real-world forensic tasks on adversarial perturbations and
generated content. Such applications reveal that our invari-
ants exhibit competitive discriminability even in the era of
deep learning.

For robust and interpretable vision tasks at larger scales,
hierarchical invariant representations can be considered as
an effective alternative to traditional CNNs and invariants.

1. Introduction

The trustworthiness is a rising topic in modern Artificial
Intelligence (AI) communities [48]. Over the past decade,
deep learning techniques, especially Convolutional Neural
Network (CNN), have led to breakthrough results in numer-
ous Al tasks, e.g., processing human perceptual informa-
tion [20], playing board games [36], and solving hard sci-
ence problems [45]. More recently, their applications are
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Table 1. A conceptual comparison with related approaches.

Traditional ~Traditional ~Scattering Equivariant Hierarchical

Approach
invariants CNNs networks networks invariants
Discriminative v v v v
Robust v v v v
Interpretable v v v v
Efficient v v

expanding into trust-related scenarios, e.g., biometrics [39],
medical diagnostics [47], self-driving cars [10], and mis-
information detection [17]. In such scenarios, the robust-
ness and interpretability of Al systems are crucial [24]: 1)
robustness means the performance is stable for intra-class
variations on the input; 2) interpretability means the behav-
ior can be understood or predicted by humans.

Integrating invariance into image representations is a
transparent structure towards robust and interpretable vision
systems [5]. Specifically, representations play a fundamen-
tal role in visual systems, where the system is generally built
on meaningful representations of digital images (rather than
the raw data) [3]. Note that the proper design/learning of
such representations in fact relies on priors w.rt. the task of
interest [43]. Here, the concept of symmetry from the Erlan-
gen Program [ 18, 42] may be the most fruitful prior — infor-
mally, a symmetry of a system is a transformation such that
a certain property of said system is invariant to this trans-
formation. Symmetry priors are ubiquitous in vision tasks,
e.g., translation as a symmetry of the classification system
where the object category is invariant under translation [11].

1.1. State of the Art and Motivation

Historically, to a certain extent, efforts at invariance [31]
and discriminability [50] have developed independently
in hand-crafted [31] and learning [50] approaches. The
compatibility between invariance and discriminability has
emerged as a tricky problem when moving towards trust-
worthy Al (see also Section A1)

In this regard, recent advances are seeking more ad-
vanced invariant designs of image representations, e.g., ge-
ometric deep learning [5], fulfilling discriminability, robust-
ness, and interpretability simultaneously.

* On the discriminability of hand-crafted representa-
tions, researchers introduce successful experiences be-



hind learning representations, especially cascading and
over-complete designs. One of the most representa-
tive work is Invariant Scattering Convolution Networks
[6], where the classical wavelet transform is expanded
into an over-complete representation with deep cascad-
ing. Unlike typical CNNs: 1) regarding the architecture,
convolutional layers are defined by fixed wavelet filters,
with modulus-based nonlinearity, but without subsequent
pooling; 2) regarding the representation properties, the ar-
chitecture yields the translation equivariance and certain
robustness w.r.z. non-linear deformations. With similar
design goals and paths, we consider Scattering Networks
as a main competitor for our work. (see also Section A2)
* On the robustness and interpretability of learning repre-
sentations, researchers introduce successful experiences
behind hand-crafted representations, especially invari-
ance and equivariance designs. One of the most repre-
sentative work is Group Equivariant Convolutional Net-
works [7], where the classical convolution is generalized
to a new definition on the symmetry group. Unlike typical
CNNs: 1) regarding the architecture, convolutional layers
are learned but with new structure inspired by symmetry
priors, e.g., re-parameterizing the filter to control sym-
metry; 2) regarding the representation properties, the ar-
chitecture commonly provides the joint equivariance for
translation and rotation. With similar design goals but on
the learning path, we consider Equivariant Networks as a
secondary competitor for our work. (see also Section A2)
Motivation: Despite starting from different theories, the
above state-of-the-art methods exhibit common problems in
the implementation efficiency and representation capability.
An over-simplified interpretation on the technical level of
such methods is as follows [38]: The input feature map is
convolved with symmetry versions of the same filter to ob-
tain multi-channel features, where the distortion on the in-
put (e.g., rotation) corresponds to the cyclic shift between
channels, and hence the invariance is achieved by pool-
ing across channels. 1) Regarding the implementation ef-
ficiency, this parallel framework leads to an exponential ex-
pansion on the computational size (w.r.t. the sampling rate
on symmetry), especially for learning representations where
the introduced new learnable parameters make the training
more challenging. 2) Regarding the representation capabil-
ity, the discrete sampling on the symmetry of filters raises
a tricky trade-off between invariance and discriminability —
higher sampling rate implies better invariance, but the re-
sulting computational cost restricts the overall size of rep-
resentation networks (going deeper or wider), and hence the
improvement of discriminability.

1.2. Contributions

As a potential step towards solving the above open prob-
lem, we conduct a systematic investigation of hierarchical
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Figure 1. The blueprint of hierarchical invariance, where the im-
age information is able to pass through each intermediate layer
in a geometrically controllable manner, and on the last layer, the
invariant features are allowed by compact designs, with also suffi-
cient information.

invariance, exploring this topic from theoretical, practical,
and application perspectives.

As summarized in Table 1, our approach stands nicely
between the two extremes, i.e., traditional invariance [31]
and CNNs [50] w.rt. discriminability, robustness, and
interpretability. Compared with the recent scattering [6]
and equivariant [7] networks, our approach is character-
ized by a more efficient design. Here, the equivariance
is continuous/one-shot, holds across layers, eliminating the
need for complex symmetry sampling, parallel framework,
and cross-channel pooling. Therefore, it exhibits better ef-
ficiency, and also allowing more flexibility in enlarging the
network size (going deeper or wider) to increase the repre-
sentation capacity.

Theory: We formalize a blueprint for hierarchical in-
variance, rethinking the typical modules of CNN represen-
tations. We define new modules with their compositions
to fulfill the blueprint, providing formal conclusions about
the geometric symmetries between image and representa-
tion. We discuss the criticisms and developments of the
above new idea versus typically concepts, highlighting our
uniqueness in moving towards robust and interpretable rep-
resentations.

Practice: We provide a specific framework for the the-
ory of hierarchical invariance, covering practical principles
about the topologies, layers, and parameters. We explore
the data adaptability potential of the above framework, re-
sorting to feature/architecture selection or cascading learn-
ing module.

Application: We conduct pattern classification experi-
ments on typical sets of texture, digit, and parasite images,
respectively, examining the properties promised by our the-
ory under diverse task scales and geometric variants. We
check the realistic usefulness in large-scale digital foren-
sics of adversarial perturbation and AIGC. Here, the HIR
yields consistently good discriminability, robustness, effi-
ciency, and interpretability in a plug-and-play way, exhibit-
ing competitive overall performance than current represen-
tation and forensic methods.



2. Hierarchical Invariance: Theory

This section focuses on the theoretical aspects of the pro-
posed HIR. As a high-level intuition, we formalize the
blueprint of hierarchical invariance, rethinking the typical
modules of CNN representations. Starting from the invari-
ant theory, we then define new modules with their compo-
sitions to fulfill such blueprint, along with representation
property justifications.

2.1. Blueprint of Hierarchical Invariance

The terms of invariance, equivariance, and covariance ap-
pear in the fields of computer vision, graphics, geometry,
and physics. We use the following identities to generally
denote such terms [21, 28]:

* invariance — R(D(f)) = R(f).

* equivariance — R(D(f)) = D(R(f)),

* covariance — R(D(f)) = D'(R(f)),

where R is a representation, D is a degradation, and D’ is
a composite function of D. Note that invariance and equiv-
ariance are special cases of covariance with D’ = id and
D' =D.

Our goal is to achieve such a CNN-like hierarchical ar-
chitecture — the image information is able to pass through
each intermediate layer in a geometrically controllable man-
ner, and on the last layer, the invariant features are allowed
by compact designs, with also sufficient information. In this
paper, this ideal representation structure is termed as hierar-
chical invariance.

Motivated by the goal, we rethink typical modules of
CNN representation and formalize a blueprint of such mod-
ules for hierarchical invariance, as shown in Fig. 1.

Formulation 1 (Hierarchical Invariance Blueprint). The
set of feature maps (including input images) is denoted as
X(Q,H) £ {M(@i,5;k) : Q — H} with the discrete do-
main (i,j) € Q and complex-valued channels €* € H,
where Q' and H' are the variants of Q2 and H, respectively
under certain operators, e.g., downsampling, and & is a
group modeling all the symmetries of interest over ). We
formalize the following modules for hierarchical invariance
» Convolutional Layer C : X(Q,H) — X(Q,H') cap-
tures local features by convolution operations. The ge-
ometric principle of C is the covariance for the symme-
try group ®, Le., there exists a predictable g’ such that
C(gM) = g'C(M) forany g € & and M € X, where the
covariance specializes to the equivariance when g’ = g.
* Nonlinear Layer S : X(Q,H) — X (Q,H’) introduces
the non-linearity in features for discriminative purposes,
with an activation function o such that (SM)(i,j) =
o(M(i, 7)), where the composition of convolutional and
nonlinear layers, i.e., SoC, is also covariant for the group
&, due to the element-wise act of o.

* Local Pooling Layer P : X(Q,H) — X(Q',H) down-
samples the plane dimensions of feature maps to reduce
computational complexity, such that Q' C Q. The geo-
metric principle of P is the (approximately) equivariance
for any ¢’ produced by C, ie., P(g'M) ~ g'P(M), al-
lowing the subsequent convolutional layer C to continue
capturing such covariant features, where the composition
P o S o C remains covariance for the group ®.

Invariant Layer 1 : X (Q,H) — Y obtains the final vec-
tor representation via a certain global pooling over plane
dimensions. The geometric principle of 1 is the invari-
ance for the symmetry group ®, i.e., 1(gM) = I(M) for
anyg € Gand M € X.

With this blueprint, HIR can be designed in a generic
way, by the ordered cascading of such modules.

2.2. Definition of Layer and Path

From the foundations of invariant theory in Section A3 [31,
32], we will give a class of definitions for layers C, S, P,
and [, satisfying the hierarchical invariance blueprint.

Definition 1 (Convolutional Layer). For the input feature
map M (3, j; k) withQ = {1,2,..., N;} x{1,2, ..., N,} and
H = ¢¥, the convolutional layer C is defined channel-wise
as local covariant representations with (A3) and (A4) in
Section A3:

CM £ (M, Vi) = M (i, j; k) @ (Hpy,, (6,5))7, (D)

where ® is the convolution over the ), (-)T denotes the
matrix transpose, and H  is a convolution kernel defined
as:

H (6,7) = {hpot (i, §) : u,v = w, (i,7) s.t. Di;ND # 0},

2
where W22 is the integral value of basis function over a
valid pixel region:

B i, ) = // (Voo (z, ) dady, )
D;;nD

with (i, j)-centered pixel region D;; = {(xz,y) € [i —
SLit+ x50+

Remark. In Definition 1, the convolutional layer C is
specified by w and (n, m), which control the representation
scale and representation frequency of CM, respectively.
Note that the C defined by (3) will directly inherit the repre-
sentation properties in Section A3, it should be regarded as
a linear covariant layer on the group ® modeling all transla-
tion, rotation, flipping, and scaling symmetries over the €.
For convenience, we denote & = & x &5, where &1 is the
translation/rotation/flipping symmetry group and &, is the
scaling symmetry group.



Definition 2 (Nonlinear Layer). For the input feature map
M(i,ji k) with Q@ = {1,2,...,N;} x {1,2,...,N;} and
H = ¢&, the nonlinear layer S is defined channel-wise as
a magnitude operation:

SM = o (M(i, j)) & |[M(i, j; k), 4)

where M (i, j; k) is complex-valued, and (12) can be written

V(ReM (i, j5 k)% + (ImM i, ji k)°.

explicitly as

Remark. With Definition 2 and Section A3, the com-
position of convolutional and nonlinear layers will exhibit
the joint equivariance of translation, rotation, and flipping,
ie,SoC(giM) = g1S o C(M) for any g; € &; and
M € X. Note that S defined by (4) not only introduces
the non-linearity in feature maps, but also converts the co-
variance g} (from C w.r.z. rotation and flipping) into the
more manageable equivariance g;. In addition, the compo-
sition So C preserves the scaling covariance of C due to the
element-wise act of S, i.e., S o C(go M) = g5S o C(M) for
any g € 6o and M € X.

Definition 3 (Local Pooling Layer). For the input feature
map M (i, j; k) withQ = {1,2,...,N;} x{1,2, ..., N;} and
H = ¢&, the local pooling layer P is defined channel-wise
as a downsampling operation:

PM = M, &)

with M’ : Q' — H, where the local pooling layer P down-
samples the plane dimensions of feature maps to reduce
computational complexity, such that Q' C €.

Remark. According to related researches, downsampling
operations (e.g., local max pooling) of CNNs will vari-
ously impair (translation) equivariance, i.e., an approxima-
tion P(gM) ~ gP(M), especially for larger pooling scales
or deeper network architectures, implying a trade-off be-
tween computational complexity and representation equiv-
ariance. Since the proposed representation is one-shot with-
out the large-scale training of typical CNNs, we neglect
downsampling operations and simply set P = id when the
computational cost is acceptable. Alternatively, more el-
egant pooling designs with better tradeoffs between com-
plexity and equivariance can be employed to define PP, as
detailed in the paper by Zhang [50]. It is straightforward
that the composition P o S o C enjoys the same representa-
tion properties of S o C based on Definition 3.

Definition 4 (Invariant Layer). For the input feature map
M, 5; k) withQ ={1,2,...,N;} x{1,2,...,N;} and H =
¢X, the invariant layer 1 is defined channel-wise as global
invariant representations with (A1) and (A2) in Section A3:

where I is a special transform mapping image moments
to global invariants, w.r.t. the symmetry group of interest
By C & X By andany M € X.

Remark. In Definition 4, we have not restricted Z to a
fixed formula, allowing the generality of the discussion in
the following Section 2.3; its specific designs (w.r.t. con-
sidered applications of this paper) will be given in Section
A7. Note that, with Definitions 1 ~ 3 and Section A3, the
M form P o S o C with its cascade will basically preserve
the geometric information of f, specifically the translation,
rotation and flipping symmetries. Therefore, the idea of Z
(w.r.t. the deep feature map M) is very similar to the clas-
sical theory of moment invariants (w.r.t. the original image
f), with a wide range of potential designs [31].

Definition 5 (Path). From Definitions 1 ~ 4, we define a
path of HIR as p = (Auj, Ap), -+ 5 Ajn]), where A\;) =
(n,m,w)(,] specifies the parameters of the convolutional
layer sorted by z. The HIR along a path p, R, is defined
as the following ordered cascading with corresponding pa-
rameters p = (A1), A[2]s -+ A[L]):

Ry = Lo P08y Cryyo---oPujeSyoCpp. (7

Remark. In Definition 5, we further unify the global and
local representation theories of moment invariants (Section
A3) into a hierarchical representation framework. Note that
the layers prior to the invariant layer I provide structure-
preserving properties for the representation R,,. Here, the
global representation (7) is designed for image-level visual
tasks, e.g., classification; as for pixel-level ones, e.g., seg-
mentation, we can preserve the spatial dimensions by re-
moving the last invariant layer. In the next section, the rep-
resentation properties of Definition 5 will be analyzed.

2.3. Representation Property

In a typical CNN, the relationship between image infor-
mation and learned representation is highly nonlinear and
difficult to understand or predict. As for the HIR, we can
explicitly give the following conclusions about the geomet-
ric symmetries between image and representation, implying
good robustness and interpretability. (see Section A4 for
proofs)

Property 1 (Equivariance for Translation, Rotation, and
Flipping). For a representation unit U = PoSoC with arbi-
trary parameters A (for the convolutional layer), any com-
position of U satisfy the joint equivariance for translation,
rotation, and flipping (ignoring edge effects and resampling
errors), i.e., the following identity holds:

U[L] o-- ~OU[2] OU[I] (glM) = glU[L] o-- 'OU[2] O]U[l](]\{g))
for any composition length L > 1, any g1 € &1 and M €
X, where & is the translation/rotation/flipping symmetry
group.



Property 2 (Covariance for Scaling). For a representation
unit U, where the scale parameter of its convolutional layer
is specified as w with a notation U” = PoSoC"¥, any com-
position of UV satisfy the covariance for scaling (ignoring
edge effects and resampling errors), i.e., the following iden-
tity holds:

Ufzy o~ o Uy o Ufyye2M)
= goUfy) o -+ o Ujg) o Ufy (M) ©)
= goUffj o+ o Ujgf o Uf (M),

for any composition length L > 1, any go € &4 and M €
X, where gl is a predictable operation corresponding to go
with explicit form ghU” £ go,U%S, s is the scaling factor
w.r.t. go, and B, is the scaling symmetry group.

Property 3 (Hierarchical Invariance). For any composi-
tion of representation unit U, it is practical to design a
global invariant map T w.r.t. the symmetry group of inter-
est g C B, x Gy, due to the predictable geometric sym-
metries between the input image and deep feature map (at
each intermediate layer) guaranteed by Properties 1 and 2.
More specifically, with Definition 4, we assume that there
exists an T such that I(gy M) = I(M) for any go € &¢ and
M € X, i.e., invariance holds on one layer, where ¢’ is a
predictable operation corresponding to g and U. Then we
have following invariance:

I(go M)z = IMy, (10)

holds for any composition length L > 1.

For a summary of this theoretical section, we discuss
the criticisms and developments of the proposed idea ver-
sus typically concepts in Section AS.

3. Hierarchical Invariance: Practice

This section focuses on the practical aspects of the proposed
HIR. Note that such efforts only serve as a feasible practice
of hierarchical invariance theory, towards the experiments
and applications in Section 4.

We discuss practical details on numerical implementa-
tions, network parameters, layer settings in Section A6.

3.1. Specifying the Architecture

Starting from Properties 1 ~ 3, we propose a practical ar-
chitecture for the hierarchical invariance w.rt. the symmetry
group of interest 7 = & x &4, with a tree topology and
working at multiple scales.

Single-scale Networks: Let us first present the topol-
ogy on a single scale, i.e., all involved convolutional lay-
ers have a common scale parameter w, which exhibits in-
variance for ®; (Properties 1 and 2). As shown in Fig.
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Figure 2. A single-scale practice of HIR with &, invariance.
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Figure 3. A multi-scale practice of HIR with &, invariance.

2, we organize the set of paths as a tree-like network: 1)
blue nodes denote the representation units U with different
parameters (n, m); 2) black nodes denote the identity func-
tion; 3) lines denote cascading relationships between nodes,
where all nodes sorted by [ along their paths are plotted at
the same level [ (sorted from top to bottom). Note that the
feature map of each node will be fed into I for forming the
invariants under this path, where the network representation
is just the set of invariants under all paths.

Multi-scale Networks: Next, let us consider a multi-
scale version of the above network with scale separation
prior, extending the invariance to &, (Property 3). As
shown in Fig. 3, a series of single-scale networks are in-
troduced: 1) they have the same tree topology and same
order parameter at corresponding nodes; 2) but each net-
work has a different scale parameter, sampled from the set
{w : w = 2"t € Z}, where the scaling covariance (w.r.1.
w) is transformed into a linear translation pattern (w.r.t.
t) between multi-scale networks. The above network can
derive a series of multi-scale representations of the image
(with invariance for &), which are directly suitable for vi-
sual tasks with multi-scale physical structure (e.g., object
detection). Further, we can derive scale-invariant represen-
tations (with invariance for &) under Property 3, by pool-
ing feature maps from a series of corresponding nodes at
multiple scales. Note that, in practice, we cannot sample
the scale completely and densely, and thus the above scal-
ing invariance is restricted.

3.2. Empowering the Data Adaptability

Due to the hand-crafted nature of HIR, a fixed set of their
features is not adaptive to the data distribution. For larger-
scale vision tasks, we propose following data adaptability
strategies, allowing our invariants to reach a similar dis-
criminability level of learning representations. Note that



unlike typical (under)-complete invariants, our invariants
exhibit a high level of over-completeness due to the local
and hierarchical structure, which is the foundation for data
adaptability strategies.

Feature/Architecture Selection: Discriminative fea-
tures for a given task can be formed in a selection-based
manner, inspired by Neural Architecture Search (NAS) [2].
First, we can construct a large-scale tree-like network (go-
ing deeper or wider), covering a wide set of paths and pa-
rameters, analogous to the notion of supernet in NAS [14].
Then, with the training set under a given task, we can per-
form correlation analysis of features and labels for ranking
discriminative features (as well as the corresponding paths),
analogous to the phase of architecture sampling and evalu-
ation in NAS [14]. With the above analysis, we can greatly
simplify the initial supernet such that the paths cover top-
ranked features for applications, allowing our representa-
tions to be task-discriminative.

Cascading Learning Module: Discriminative features
for a given task can also be formed in a learning-based
manner, inspired by Hybrid Representation Learning (HRL)
[30]. The main idea is to replace shallow layers of learn-
ing CNNs with a fixed HIR, such that discriminative fea-
tures are formed in a space with geometric symmetries. Ac-
cording to related justifications [30], this strategy is able
to achieve a discriminability-level rivaling typical CNNs on
large-scale classification benchmarks, while exhibiting sig-
nificantly better training compactness. In all experiments
and applications of this paper, we still employ the fea-
ture/architecture selection strategy to show the superiority
of the hierarchical invariant framework itself, taking also
into account that the cascading CNN weakens invariance
and interpretability to some extent.

4. Experiments and Applications

In this section, we will comprehensively evaluate the dis-
criminability, robustness, and efficiency of HIR, covering
simulation experiments in Section 4.1 and real-world appli-
cations in Section 4.2. Here, the main aim is for examining
the representation properties promised in previous sections,
as well as positioning its discriminative power in the era of
deep learning. (see Section A7 for implementation details)

4.1. Simulation Experiments

We perform classification experiments with HIR on typi-
cal sets of digit, texture, and parasite images, benchmarking
its representation capabilities. We have moved the experi-
ments on texture and parasite images to Section A8 due to
space constraints. Note that this series of simulation ex-
periments examines the properties promised by our theory
under diverse task scales and geometric variants, also with
comparisons to a range of hand-crafted and learning repre-
sentations.

Figure 4. Illustration for the datasets from simulation experiments.

Table 2. Classification scores (%) and runtime (second) for differ-
ent representations on a digit benchmark.

Time Original Trans. & Rota.
Method GPU}  Pre. Rec. Fl1 Pre. Rec. F1
Classical:
Cosine 15 45.68 4535 4543 3250 31.20 30.83
Wavelet 16 67.11 66.75 66.75 3831 3525 3544
Kraw. 15 7173 69.85 69.69 27.05 2630 25.83
Learning:

SimpleNet ~ 535f 98.60 98.60 98.60 3542 33.50 33.72
SimpleNet+ 5511 5270 4890 48.82 5426 50.75 50.78
AlexNet 3937 100 100 100 66.18 64.45 64.27
AlexNet+ 392 93.07 9200 91.80 9423 93.10 9293
VGGNet 36101 100 100 100 70.74 70.25 69.93
VGGNet+ 77311 9598 95.70 95.68 9553 9520 95.13

Invariant:

ScatterNet 115 9896 9895 9895 5720 5695 56.23
HIR 57 97.48 9745 9745 9505 9495 9498

The competing representations involved here can be
summarized as follows:

* Classical complete representation: discrete cosine trans-
form as a global representation;

* Classical over-complete representation: discrete wavelet
transform [27] and Krawtchouk moments [49] as local
representations of different time-frequency resolutions;

* Advanced over-complete representations: 1) typical
CNNs, e, direct-learning CNNs (denoted as Sim-
pleNet), transfer-learning AlexNet [19] and VGGNet
[37], with also data augmentation (denoted as ‘+’); 2) in-
variant CNN:s, i.e., scattering networks [6] and our HIR.
They can all be considered as a class of hierarchical
invariant representations, but with different invariances,
where typical CNNs are invariant only to translations.

As shown in Fig. 4, the experiment is executed on a digit
dataset' for classification similar to the MNIST benchmark.
This dataset has 10 classes from ‘0’ to ‘9’, each contain-
ing 1000 instances with rich font differences and geometric
distortions, the total size is 10 x 1000 = 10000.

As shown in Table 2, we list performance scores and
elapsed times of the competing representations on this
benchmark. Besides this direct protocol, we also con-
sider testing image variants with random translation (w.r.z.
—2 ~ 2 pixels in axial directions) and random rotation
(w.r.t. 0 ~ 360 degrees around the center).

Uhttps://ww2.mathworks.cn/help/deeplearning/ug/data-sets-for-deep-
learning.html
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Figure 5. [llustration for the datasets from forensic applications.

* The classical representations fail to achieve a satisfac-
tory level of discriminability. Here, the complete Co-
sine exhibits the worst scores, while the over-complete
Wavelet and Krawtchouk perform better, revealing the
role of over-completeness in the discriminability. Regard-
ing robustness, such representations all fail against trans-
lation and rotation variants, implying the challenging na-
ture of this protocol.

e In general, the learning CNN family achieves signifi-
cantly higher scores due to its over-complete and data-
adaptive properties, but also with the sensitivity of learn-
ing to network size, training strategy, and geometric vari-
ants. Its robustness is significantly increased after aug-
mented training. However, theoretically, the resulting ro-
bustness is not guaranteed for unseen data distributions
(even for similar variants with unseen parameters). One
can note the rapid expansion of computational cost: the
transfer learning of VGGNet even takes ~ 2 GPU hours.

* The handcrafted scattering networks provide a good level
of discriminability here. However, it exhibits unsatis-
factory scores for translation and rotation variants, even
lower than the CNNs without augmentation, failing to
achieve the expected robustness.

* The HIR significantly outperforms the main competitor,
i.e., scattering networks. It achieves a similar level of
discriminability as the learning CNN family, also under
the constraints of invariance and compactness. Note that
our HIR is the only method exhibiting confusion between
classes ‘6 and ‘9’ in the direct training, while achieving
~ 100% scores for the rest. This phenomenon is in line
with the rotation invariance and discriminative power ex-
pected by our theory.

4.2. Forensic Applications

For real-world applications, we employ the HIR for large-
scale digital forensics, i.e., detections of AIGC and adver-
sarial perturbation, for direct checking its usefulness in ro-
bust and interpretable tasks. We have moved the appli-
cations on adversarial perturbations to Section A8 due to
space constraints. Note that this plug-and-play strategy will
not only be compared to similar representations, but will
also a range of current forensic solutions, including well-
designed deep forensics.

The competing methods involved here can be summa-
rized as follows:

Table 3. AIGC Forensic Scores (F1, %) for Different Representa-
tions w.r.t. Various Types of Generators.

Method ADM BGAN GLIDE Midj. SD14 SDI.5 VQDM Wukong AVG MIN
Classical:

Cosine NN 0.00 0.00 0.00 000 000 6509 0.00 0.00 8.14  0.00
Cosine SVM 99.19  99.95  99.57 89.02 99.10 98.80  99.46 99.11  98.03 89.02
Wavelet NN 0.00 0.00 0.00 0.00  0.00 2.08 0.00 0.00 026  0.00

Wavelet SVM 9998 99.70  99.87 8555 98.63 99.04  99.97 99.38 9776 85.55

Kraw. NN 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00  0.00

Kraw. SVM 99.75  99.60 9849 6244 7411 7798  93.63 76.00 8525 6244

Learning:

SimpleNet 98.25 97.87 9298 68.00 73.52 7437 74.88 76.32 8202 68.00

AlexNet 9445 9899 9826 81.52 8796 88.66 8424  88.62 9034 8152
VGGNet 99.40 9938  98.57 8644 8997 9186 9360  90.09 93.66 86.44
GoogLeNet ~ 80.30  99.18 9816 7500 8277 8244 8675 8232 8587 75.00
ResNet 98.78  99.14  97.78 8741 89.88 90.85 8853  88.80  92.65 87.41
DenseNet  99.63  99.60  98.57 93.08 9379 9450 9501 9255 9584 92.55
InceptionNet ~ 97.69  99.41 9832 90.07 89.40 92.55 9272 8835 93.56 8835
MobileNet ~ 90.08 9928  97.95 87.49 8851 9075 8774 8829 9126 87.49
Invariant:
ScatterNet NN 9910 99.63  98.44 7947 89.26 8995 9671  89.07 9270 79.47
ScatterNet SVM  99.18  99.67  99.05 8521 9585 9558 97.02 9460 9577 8521
HIR NN 99.92  99.97  99.83 92.63 9857 9897 9992 9858  98.55 92.63

HIR SVM 99.90  99.92  99.78 9218 99.07 99.26  99.87 99.42  98.68 92.18

* All the representations in Section 4.1 as direct forensics;

* More deep representation milestones for direct forensics,
i.e., GoogLeNet [40], ResNet [15], DenseNet [ 16], Incep-
tionNet [41], and MobileNet [35];

* The forensic methods designed for adversarial pertur-
bation, ie., arXiv'l7 [9], ICLR’18 [23], TDSC’18
[22], ICV’19 [12], CVPR’19 [25], TDSC’20 [1], and
arXiv’23 [44];

* The forensic methods designed for AIGC, i.e., ECCV’20
[33], CVPR’20a [46], and CVPR’20b [26].

As shown in Fig. 5, fake images with similar content to
ImageNet” are synthesized through 8 AIGC methods”, i.e.,
ADM [8], BGAN [4], GLIDE [29], Midjourney”, SD 1.4
[34], SD 1.5 [34], VQDM [13], and Wukong’, respectively,
resulting in 8 benchmarks, each containing 6000 natural im-
ages and 6000 synthesized images. This task exhibits higher
level of discriminative challenges, in light of the very rich
variability of both natural and synthesized content.

In Table 3, we train and test all representations on the
8 benchmarks, presenting the corresponding F1 scores, as
well as the average and worst score statistics. Besides this
direct protocol, we also consider testing image variants with
random orientation or flipping in Table 4, reflecting the ba-
sic geometric robustness requirements.

* One can observe that the frequency forensic clue of the
Al-generated pipeline is still very effective. The classi-
cal representations based on SVM classifier achieve con-
sistently good accuracy and robustness, suggesting that
state-of-the-art generators (even diffusion ones) still ex-
hibit inherent frequency artifacts. However, such features
exhibit significant sensitivity to classifiers. A potential
reason is the restricted separability, where one must resort
to complex classification strategies in the feature space.

Zhttps://www.image-net.org
3https://genimage-dataset.github.io
“https://www.midjourney.com/home
Shttps://xihe.mindspore.cn/modelzoo/wukong



Table 4. AIGC forensic robustness scores (F1, %) for different
representations w.r.t. various types of generators.

Testing With Random Orientation and Flipping

Method ADM BGAN GLIDE Midji. SD14 SDL5 VQDM Wukong AVG MIN

Classical:
Cosine SVM 99.16  99.95  99.55 88.07 99.05 98.72  99.36 99.11  97.87 88.07
Wavelet SVM 9995 99.80  99.85 8283 99.08 9871  99.95 99.16  97.42 82.83
Krawt. SVM 70.90 9958 9857 6490 7728 76.58  94.44 7672 8237 64.90

Learning:

SimpleNet 7772 9504 9299 6525 7452 7472 73.62 7691 7885 65.25
AlexNet 81.82  99.08 9799 7745 8587 8793 8329 86.78  87.53 7745
VGGNet 76.18  99.40 9841 8223 89.26 89.30  88.79 89.00  89.07 76.18
GoogLeNet 80.62 9930  98.09 73.13 8129 81.92 8536 8231 8525 73.13

ResNet 85.62 9928  97.60 81.82 8560 86.84 87.94 8521  88.74 81.82
DenseNet 84.57 9956  98.66 8857 91.16 91.60  94.26 89.47 9223 8457
InceptionNet 91.99 9930 98.56 87.04 8572 88.85 92.19 85.24 91.11 8524

MobileNet 85.14  99.36 97.78 8454 86.74 88.80 87.50 86.56 89.55 84.54

Invariant:

ScatterNet SVM ~ 92.61 99.67 99.18 8275 8881 89.40 97.05 83.83 91.66 8275
HIR SVM 99.88  99.87 99.77 9199  99.02  99.25 99.83 99.45 98.63  91.99

* The learning representations other than SimpleNet and
GoogLeNet achieve > 90% average scores, further con-
firming their good discriminability with sufficient training
data and aligned testing protocol. However, for the ro-
bustness protocol in Table 4, they exhibit varying degrees
of performance degradation, in both average and worst
statistics. Clearly, even natural and slight shifts in the data
distribution can strongly interfere with the learning foren-
sics. In particular, such interference is highly black-boxed
(i.e., unpredictable), where an example is the significantly
higher fluctuations on ADM compared to others.

* The scattering networks exhibit similar level of discrim-
inability and robustness as the learning representations,
while outperforming the original wavelets in classifier
stability. Note that scattering networks fails to achieve
the expected invariance and thus cannot provide higher
robustness scores than learning CNNs.

* Regarding the discriminability, geometric invariance, and
classifier stability, our HIR achieves better combined per-
formance versus classical representations, scattering net-
works, and learning CNNs. This is in line with our the-
ory expectation that HIR combines the advantages of both
hand-crafted and learning representations. While its effi-
ciency will be further highlighted in the next experimental
protocol.

In Table 5, we train and test all representations on a
hybrid of the 8 AIGC benchmarks, presenting scores at
two training-testing ratios. This protocol is more challeng-
ing due to very complex intra-class variability, while being
more practical for real-world forensic scenarios.

» The classical representations exhibit good discriminabil-
ity for this hybrid benchmark, along with the benefit of
sample efficiency. In line with previous observations,
they still exhibit score fluctuations on the two classifiers.

* The forensic scores of the learning CNN family drop sig-
nificantly, with average scores of only ~70% in the 1/9
case. This further illustrates the weakness of learning
forensic algorithms in dealing with real-world scenarios,
i.e., the data dependence problem.

Table 5. AIGC forensic scores (%) for different representations on
a real-world (hybrid) benchmark

Train./Test. = 5/5 Train./Test. = 1/9

Method Pre. Rec. Fl  Pre. Rec. Fl

Classical:

Cosine NN 0.00 0.00 0.00 000 000 0.00
Cosine SVM 9495 9457 9476 9436 91.06 92.68
Wavelet NN 4870 94.17 64.20 48.69 94.13 64.18

Wavelet SVM  94.03 9457 9430 83.55 9348 88.24

Kraw. NN 0.00 0.00 0.00 0.00 000 0.00

Kraw. SVM  75.24 7477 7500 71.56 68.57 70.03

Learning:

SimpleNet 61.79 40.70 49.08 5640 6048 5837
AlexNet 80.76  77.63 79.16 71.83 7250 72.17
VGGNet 8475 86.67 8570 7245 7237 7241

GoogLeNet  74.15 80.40 77.15 67.84 6883 68.33
ResNet 85.10 83.03 84.06 76.88 73.67 7524
DenseNet 86.83 8523 86.02 76.84 7537 76.10

InceptionNet  82.69 86.63 84.62 68.62 68.56 68.59

MobileNet 81.54 8247 8200 6852 68.57 68.55

Invariant:

Scatter. NN 83.68 83.73 83.71 79.37 79.70 79.53
Scatter. SVM  90.31 85.17 87.67 8528 79.70 82.40
HIR NN 96.79 9647 96.63 95.66 93.04 9433
HIR SVM 96.92 9637 96.64 9521 9426 94.73

* The scattering networks inherits the discriminability level
and classifier stability from Table 4, also with better
scores than all learning representations in the 1/9 case.
These all indicate the superiority in combined perfor-
mance.

* Here, the HIR achieves the highest scores over classical
representations, scattering networks, and learning CNNss.
Its discriminability allows for a hybrid forensic of the
8 AIGC methods in the 1/9 case with fewer samples,
implying the usefulness in real-world forensic scenar-
i0os. Note that the ECCV’20, CVPR’20a, and CVPR’20b
specifically designed for AIGC forensics exhibit 79.67%,
73.74%, and 76.89% F1 scores in the 1/9 case, respec-
tively.

5. Conclusion

In this paper, we have systematically investigated the topic
of hierarchical invariance, as an early attempt to harmonize
the divergence between typical CNNs and invariants w.r.z.
discriminability and robustness. Compared to related re-
search approaches, our hierarchical invariant representation
can be characterized as 1) principled and transparent design,
2) efficient invariant structure, and 3) competitive discrim-
inability in the era of deep learning.
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Appendix for
“Transparent Vision: A Theory of Hierarchical Invariant Representations”

Al. Historical Perspectives of Invariance

We provide some historical perspectives on the invariance
in the development of image representations. The quest for
invariance dates back to the gestation of computer vision
itself, spanning both hand-crafted and learning approaches
[31:

* In the hand-crafted approach, symmetry priors (e.g., in-
variance and equivariance) w.rt. geometric transforma-
tions (e.g., translation, rotation, and scaling) have been
recognized as main ideas in designing representations.
Such ideas cover almost all classical and state-of-the-art
methods, from global features (e.g., moment invariants
[25]), to local sparse features (e.g., SIFT [20]), and to lo-
cal dense features (e.g., DAISY [33]). However, these
hand-crafted representations are all fixed in design, rely-
ing on (under)-complete dictionaries, and therefore fail
to provide sufficient discriminability at larger scales, e.g.,
ImageNet classification task [28].

¢ In the learning approach, CNNs achieve over-complete
representations of strong discriminative power for larger-
scale vision tasks, through a cascade of learnable nonlin-
ear transformations. As a textbook view of deep learn-
ing, representations should be learned not designed [18].
Therefore, typical CNN representations are equipped
with very few symmetry priors, typically just transla-
tion equivariance [15], but has recently been proven to
no longer hold in deeper layers of the CNNs with down-
sampling structures [42]. In general, these learning rep-
resentations lack robustness and interpretability guaran-
tees, e.g., the presence and understanding of adversarial
perturbations [6], and therefore cannot be well extended
to trustworthy tasks [32].

Historically, to a certain extent, efforts at invariance
and discriminability have developed independently in hand-
crafted and learning approaches. The compatibility between
invariance and discriminability has emerged as a tricky
problem when moving towards trustworthy Al

A2. Related Works

In this section, we supplement the developmental efforts of
scattering and equivariant networks.

AZ2.1. Scattering Networks

Theoretical works further explored various geometric in-
variants [29], more general mathematical formulations [36],
and the potential for improving the efficiency, interpretabil-
ity, and robustness of state-of-the-art CNN techniques [24].
Regarding applications, they provided competitive results in
a variety of tasks on audio [1], image [5, 24, 29] and graph
[9] data, some of which are even interdisciplinary [10, 41].

A2.2. Equivariant Networks

Theoretical works further explored the equivariance for ro-
tation [12, 35, 38], flipping [12], scaling [30, 37], and their
combination [31] from various mathematical theories, in-
cluding steerable filters [12], harmonic analysis [38], scale
space [37], Lie groups [13], and B-spline interpolation [4].
Regarding applications, they played a key role in low-level
vision tasks [39], especially scientific discoveries with sym-
metry priors [2, 34].

A3. Foundations of Invariant Theory

Our work develops from the theory of moment invariants.
Therefore, we begin with a brief review on the foundations
of moment invariants, covering some concepts, notations,
and definitions.

A3.1. Global and Local Representations

In general, classical moments and moment invariants are
global representations of images, where the theory is built
on the following definition [25]:

. Vi) = / /D Ve (@) fry)dedy, (A

where f is the image function, V,,,, is the basis function
with order parameter (n,m) € Z? on domain D, and * is
the complex conjugate. Note that the domains of f and V,,,,
in (A1) have the same/similar location and scale, implying
the global nature of the representation information.

With the sparse prior and geometric prior for natural im-
ages, two typical constraints, i.e., orthogonality and rotation
invariance, often imposed on the explicit definition of Vi,



leading to the following polar form:

(fs Vam) = / R:(r) AL (0) f(r,0)rdrdd,  (A2)

where V., (r cos 0, 7 sin 0) = Vi, (r, 0) is separated as the
el
@ y
product of the angular basis function A,,(0) = exp(jmé)
(J = V/—1) and the radial basis function R, subject to

1
the weighted orthogonality condition | R, (r)R}, (r)rdr =
0

50 . Note that the basis function V., = Ry, A, in (A2)
is orthogonal on D, and the magnitude of {f, V,,,,,) is invari-
ant to the rotation on the image f (see [25] for a survey).

In our recent work, moments and moment invariants are
extended to local representations of images, where the the-
ory is built on the following definition [26]:

where the new basis function V,*»* introduces position pa-
rameters (u, v) and scale parameter w. It can be interpreted
as a translated and scaled version of the global V,,,, with
the following coordinate relationship:

2
{ f\/x—u (y —v) ’ (Ad)

0" = arctan(2=)

where the domain is a disk centered at (v, v) and with radius
w: D = {(x,y) : (x —u)?+ (y —v)? < w?}. Note that
(A3) allows the domain of V,»”" to be built in different po-
sitions and scales w.r.t. the domain of f, implying the local
nature of the representation information. Also, the classical
definition (A2) is in fact a special case of the new definition
(A3) with (u,v) = (0,0) and w = 1 (see [26] for details).

A3.2. Invariance, Equivariance, and Covariance

The terms of invariance, equivariance, and covariance ap-
pear in the fields of computer vision, graphics, geometry,
and physics. We use the following identities to generally
denote such terms [19, 22]:

¢ invariance — R(D(f)) = R(f).

* equivariance — R(D(f)) = D(R(f)),

¢ covariance — R(D(f)) = D' (R(f)),

where R is a representation, D is a degradation, and D’ is
a composite function of D. Note that invariance and equiv-
ariance are special cases of covariance with D’ = id and
D' =D.

Starting from the local representation (A3), one can ver-
ify that (f, V,“*) exhibits the following properties w.r1.
translation, rotation, flipping, and scaling on images (see
[26] for details).

The image translation leads to
(f(z+ Az, y + Ay), V¥ (2, y))
= (S, ), Visranwsane (g g)),

where (Az, Ay) is the translation offset of the image f.
Note that the same (Az, Ay) appears in position parame-
ters (u, v), implying the equivariance w.r.t. the image trans-
lation.

Since the translation equivariance holds, the following
analysis (A6) ~ (A8) will consider only center-aligned ge-
ometric transformations, i.e., we can restrict (u,v) = (0,0)
without loss of generality.

The image rotation leads to

(f(r,0+ ), Vi (r',0")
= (f(r,0), Vi (1, 6") A5, (=),

with (u,v) = (0,0), where ¢ is the rotation angle w.r.z.
the center of the image f. Note that the same ¢ appears
in the phase of the representation, implying the covariance
w.r.t. the center-aligned rotation. It is straightforward that
the covariance (A3) will specialize to the invariance when
taking the magnitude as | (f(r,0 + ¢), V;A2w(r',0")) | =
[ (f(r, 0), Vi (r', 0)) |.
The image flipping leads to

<f(’l", 79)’ Vn’l,trlr)Lw (Tlv 9l)>
= (<f(7“, 9)) V#;)lw(,,,/’ 9/)>)*,

with (u,v) = (0,0), where f(r, —0) is a vertically flipped
version of the image f w.r.t. the center. Note that center-
aligned vertical flipping again only affects the phase of the
representation, implying the covariance similar to (A6). As
for other flipping orientations, the same conclusion can be
derived from the composite of rotation and vertical flip-
ping. It is straightforward that the joint invariance of center-
aligned rotation and flipping holds when taking the magni-
tude of the representation.
The image scaling leads to

(F(sz,sy), Vi (,y)
= (f(@.9), Vil w,9) )

with (u,v) = (0,0), where s is the scaling factor w.r.z. the
center of the image f. Note that the same s appears in the
scale parameter w, implying the covariance w.r.f. center-
aligned scaling.

For the representation properties when (u,v) # (0,0),
they can be derived from the composite of translation with
center-aligned rotation, flipping, and scaling, respectively.
Hence, the magnitude of the representation has joint equiv-
ariance for any translation, rotation, and flipping on (u, v)
domain, as well as covariance for any scaling on w domain.

(AS5)

(A6)

(AT)

(A8)



A4. Proofs

A4.1. Equivariance Properties

Proof. First, let us examine the behavior of a representation
unit U on &;:

U(giM) =PoSoC(g1 M)
=PoSog|C(M)
=Pog;SoC(M)
— giPoS o C(M)
=g U(M),

where the first pass comes from the covariance of C for rota-
tion and flipping, i.e., (A6) and (A7), and g] is a predictable
operation acting in the phase domain of C(M); the second
pass comes from the specialization of S to the covariant g} —
the magnitude operation removes the extra phase variations,
leading to a pure equivariance g;; the third pass comes from
the identity function of P, which becomes approximately
equal when the downsampled P is used.

Here, U(gy M) = g1 U(M) means that the representation
unit U can be considered as an equivariant layer for any
g1 € 6, and M € X — in other words, the single U and
g1 operations on M € X are exchangeable. Furthermore,
with a notation M[l] = U[l] o0---0 U[l] (M) = U[Z]M[l—l]’
we have M € X forany ! € {1,2,---, L}. Therefore, g;
and any composition of U are exchangeable, implying the
correctness of Property 1. O

(A9)

A4.2. Covariance Properties

Proof. First, let us examine the behavior of a representation
unit UY on By:
U*(g2M) =PoSoC*(g2M
=PoSogyC¥(M
=PoSog,C" (M)
=PogsSoC¥ (M)
= gaPoSoC¥ (M)
= g2U"* (M)
= g, U (M),

)
)

(A10)

where the first pass comes from the covariance of C for scal-
ing, i.e., (A8), and g} is a predictable operation acting in
both the €2 domain (i.e., the same scaling g-) and the w do-
main (i.e., the factor s) of C*(M); the second and third
passes come from the element-wise act of S and the identity
function of PP, respectively.

Here, U* (g2 M) = g4U" (M) means that the represen-
tation unit U" can be considered as an covariant layer for
any g2 € 6B and M € X - in other words, the single
U™ and go operations on M € X are exchangeable but
with the parameter changing of ws. Furthermore, we have

My € X forany [ € {1,2,---,L}. Therefore, go and
any composition of U" are exchangeable while changing
the scale parameter to ws, implying the correctness of Prop-
erty 2. O

A4.3. Invariance Properties

Proof. We can rewrite I(gy M)z as:

]I(gOM)[L] =1Io U[L] 0--+0 U[g] o U[l] (gOM)
= I(goUz) o -+ 0 Upg o Uy (M)
=ToUpyo---oUyg oUp (M)

(Al1)

where the first pass comes from Properties 1 and 2, note
that go € &y C &, X By, g is related to g; and g; the
second pass comes from our assumption I(gyM) = I(M)
for any go € & and M € X, with M € X forany [ €
{1,2,---, L}. Therefore, I(goM)[z) = IM[z), implying
the correctness of Property 3. O

AS. Theoretical Comparisons

It is necessary to highlight the theoretical relationships with
typical related works:

* Traditional Invariants: Our work generalizes this the-
ory by unifying the global and local invariant representa-
tions into a new framework of HIR. More specifically, we
formalize layers C, S, and [P based on the theory of lo-
cal invariants [26] (Definitions 1 ~ 3), arguing the equiv-
ariance/covariance can be preserved across layers under
a certain cascade (Properties 1 ~ 2). We also formalize
layer I based on the theory of global invariants [25] (Def-
inition 4), arguing the successes of global invariance for
image domains can be directly generalized to equivari-
ant/covariant deep feature domains (Property 3). Under
our hierarchical invariance, classical global [25] and lo-
cal [26] invariants can be considered as special cases, i.e.,
IfandI oS o Cf (Definition 5).

* Traditional CNNs: Our work has a similar hierarchi-
cal architecture but with better properties in geometric
symmetry, allowing for robust and interpretable image
representations. More specifically, we introduce the dis-
criminative design of CNNSs in our invariants, i.e., over-
complete representation with deep cascading [42]. On the
other hand, we criticize typical CNN modules (Formula-
tion 1), allowing fully transparent geometric symmetries
across layers of our representation (Properties 1 ~ 3). As
a result, the proposed representation serves as an effective
alternative to the highly black-box CNNs in trustworthy
tasks.

* Scattering Networks: Our work is more compact in
achieving rotation invariance. As a main competitor,
scattering networks are also based on deep cascading of



explicit transforms (wavelets) [5], with similar concepts
to our work. However, constructing rotation invariants
from scattering networks is complicated, which requires
parallel convolution and cross-channel pooling of mul-
tiple oriented wavelets; increasing the orientation sam-
pling will result in an exponential growth of the complex-
ity. Whereas our approach benefits from classical invari-
ant theory, rotation invariance is continuous and one-shot
(Property 1), providing better efficiency while easily en-
larging the network size to improve the representation ca-
pacity.

¢ Equivariant Networks: Our work is non-learning while
being more compact in achieving continuous and joint
invariance. As a secondary competitor, equivariant net-
works are also guaranteed by group theory [11], with
similar concepts to our work. However, the convolu-
tional layers in equivariant networks are learned, lead-
ing to varying degrees of data dependence. In particular,
it has a similar parallel structure to scattering networks,
leading to exponential complexity and optimization chal-
lenges. Although equivariant networks are a very generic
design, our approach provides better efficiency for contin-
uous and joint invariance (Properties 1 ~ 3), while easily
enlarging the network size to improve the representation
capacity.

A6. Practical Details

In this section, we discuss more practical details on numer-
ical implementations, network parameters, layer settings.

A6.1. Fast and Accurate Implementation

We will complement the numerical implementation of HIR,
especially the fast and accurate computations of Definition
1 from our previous work [26]. Note that the discussion
here is very general, with no restrictions on the specific def-
initions of the basis functions.

Definition (Fast Implementation). Let us introduce the con-
volution theorem as a fast implementation of Definition 1,
such that the spatial domain convolution of (A9) can be
converted to the following frequency domain product form
[26]:

CM = F~(F(M(i, js k) © F((H (6,4)7)), (A12)

where F' is the Fourier transform and © is the point-wise
multiplication.

Property (Complexity Analysis). In Definition 1, the (1)
dominates the computational complexity due to the dense
convolution.  For the input feature map M (i,j; k) with
Q={1,2,-,N;} x {1,2,--+ ,N;} and H = €&, we
assume that a set of CM needs to be computed, where the
scale parameter w € Sy, with a fixed order (n,m) and

a fixed channel k, and denote the number of feature map
samples as N;; = N;N; and the number of scale sam-
ples as Ny, = |Sy|. With the above definition and the
Fast Fourier Transform (FFT), we can compute the set of
CM in O(NyN;j;log N;;) multiplications, as opposed to
the complexity of O(Ny N;jwmax>) by the direct Definition
1, where Wmax 1S the maximum scale in S,,. Note that the
big difference between square and logarithmic growths in
the complexity (removing the same terms), where the above
definition will exhibit batter efficiency when wyax is suffi-
ciently large such that Wmay> > log Nj.

Definition (Accurate Implementation). Let us introduce the
higher-order numerical integration as an accurate imple-
mentation of Definition 1, such that the two-dimensional
continuous integral of (3) can be converted to the follow-
ing summation form [26]:
)~ Y Vil w) St A
(a,b)ESqp

where the set of numerical integration samples S, encodes
the points (zq,ys) € D;j and the corresponding weights
Cab, Which are specified by a certain numerical integration
strategy, such as Gaussian quadrature.

Property (Accurate Analysis). In Definition 1, (3) domi-
nates the computational accuracy due to the continuous in-
tegration of complicated functions. We assume that hv""
with a fixed order (n,m) and position (u,v) needs to be
computed, and denote the number of numerical integra-
tion samples as Ngp = |Sap|. The implementation based
on the above definition exhibits an approximation error of
O((%)N‘“’“). Note that when there is more than one
sample within each pixel region, i.e., Ng, > 1, the above
definition will exhibit batter accuracy than the error of
O( (%)2) by the direct Definition 1 (zero-order approxi-
mation).

A6.2. Parameters of Single-scale Networks

Here, the order parameter (n, m) of the previous unit (blue)
is always smaller than that of the subsequent ones (under a
specific norm), so that the path exhibits an increasing trend
in the order. With this design, the main information can
be passed through the early nodes, and hence the subse-
quent nodes capture rich features. Also, the identity func-
tion (black) is introduced as a skip-connection trick, allow-
ing the information to be passed to deeper nodes. In this pa-
per, all units from the same level [ are specified separately
from the set {(n,m) : n+m = I, (n,m) € N2}, i.e., their
orders are equal under the #; norm.

A6.3. Radial Basis Functions

In our previous work [27], two generic classes of radial ba-
sis functions have been introduced, based on a family of



harmonic functions:

O[T‘o‘_2

2

R, (a,r) = exp(j2nmr®), (A14)

and a family of polynomial functions:

Re (g ) =) STt = )" Hp + 20)T (g + !
n\P &7 = 27rF(p+n)F( qurnJrl)

Z p+n+k)
k' (g + k)

(A15)

respectively, where the fractional parameter o € R™, the
polynomial parameters p,q € R must fulfill p — ¢ > —1
and ¢ > 0. Both classes of functions can be used to define
R, in the (A2), satisfying the orthogonality condition.

For the sake of simplicity, a family of cosine functions
are chosen in all experiments and applications, as a special
case of the (A14):

ﬁ n=>0
Rn = s Al6
(r) \/%cos(nmj) n>0 (A16)

i.e., forming a hierarchical invariant version of the Polar Co-
sine Transform (PCT) [40]. Note that we try to show the su-
periority of the hierarchical invariant framework itself, even
if relying on naive (A16).

A6.4. Invariant Layer

In the monograph [14] and our previous work [25], a num-
ber of strategies for directly constructing global invariants
in image domains have been presented. They can be nat-
urally used to define Z in (6), with the equivariant or co-
variant behavior of deep feature maps (Properties 1 ~ 3).
In all experiments and applications of this paper, a class of
global invariants is concisely designed based on frequency
pooling.

Regarding (6), we first let the Fourier basis be
Viam (24, y;). Note that the Fourier Transform (FT) is highly
understood in the signal processing community and can be
considered a good foundation for interpretability. Then,
based on the order/frequency sampling of the FT (n,m) €
[~ K, K]?, we define T as a frequency-band integral in the
polar system:

I({(M, Vam)}) £
Z (M, Vo) [} 18 = 1,2, #5

(n,m)eB; A17)
where B; = {(n,m) : VZK (i — 1)/#5| < |[(n,m)]l2 <
V2Ki /#p} is the i-th frequency band under the ¢5 norm,
with the number of bands #p.

Here, we can state that the above feature vector {I; :
i = 1,2,...,#p} directly satisfies the invariance for &1,
in light of Property 1 and the translation, rotation and flip-
ping properties of FT. As for scaling, Z is compatible with
both single-scale and multi-scale networks: 1) regarding the
single-scale case, a certain degree of robustness is provided
for &4 (at least up to the bandwidth), in light of Property
2 and the scaling property of FT; 2) regarding the multi-
scale case, the scaling covariance has been eliminated be-
fore feeding into Z, and thus will satisfy the joint invariance
for Qﬁo = 61 X 62.

Note that the well-known average pooling is in fact a
special case of (Al17), with K = 0 and #p = 1. Our
frequency-band integral Z can be regarded as a generic de-
sign of global pooling, with comprehensive consideration
on interpretability, invariance, and discriminability.

A7. Implementation Details
ments/Applications

of Experi-

All experiments/applications are executed in Matlab
R2023a under Microsoft Windows environment, based on
2.90-GHz CPU, RTX-3060 GPU, and 16-GB RAM.

Experiment: Our HIR is implemented here as a single-
scale network, where scale parameter w = 10 and compo-
sition length L = 6; its invariant layer (A17) is specialized
to the average pooling, with K = 0 and #p = 1, for a fair
comparison with the deep representations by average pool-
ing. Note that the adaptability strategies of Section 3.2 are
not employed here, for a direct assessment of its discrimina-
tive power. All features are fed into a PCA classifier, trained
on features of the training set. Unless otherwise stated, the
training and testing sets are formed without any crossover
by random sampling at 80% and 20% ratios on the original
dataset, respectively.

Application: Our HIR is implemented here as a single-
scale network, where scale parameter w = 10 and compo-
sition length L = 7; its invariant layer (A17) is specialized
with K = N /2 and #p = 30, for improving the dis-
criminability of digital artifacts. Note that the feature/ar-
chitecture selection strategy of Section 3.2 is employed for
data adaptability and discriminability, where the top-ranked
500- and 1000-dimensional features are selected for AIGC
and adversarial perturbation, respectively. All features are
fed into both NN and SVM classifiers, for evaluating the
sensitivity w.r.t. the classifier. Unless otherwise stated, the
training and testing sets are formed without any crossover
by random sampling at 50% and 50% ratios on the original
dataset, respectively.



Table Al. Classification scores (%) and runtime (second) for dif-
ferent representations on a small-scale texture benchmark.

Time Original Orien. & Flip.
Method " Gpyt  Pre. Rec. FI  Pre. Rec. FI
Classical:
Cosine 5 70.74 6750 66.85 69.65 6625 6530
Wavelet 6 69.43 6438 64.68 62.34 58.13 57.82
Kraw. 5 70.67 67.50 66.30 6441 60.00 59.55
Learning:

SimpleNet 52 7033 67.50 67.09 54.63 43.13 4131
SimpleNet+ 521 4693 4938 46.06 47.18 48.13 4493
AlexNet 421 98.82 9875 9875 91.69 91.25 91.28
AlexNet+ 417 87.61 8438 84.05 8837 8563 8576
VGGNet 2667  99.41 9938 99.37 92.18 9125 91.37
VGGNet+ 6091  91.34 90.00 89.81 92.15 9125 91.08

Invariant:
ScatterNet 42 98.89 98.75 98.75 8498 83.13 83.08
HIR 27 96.98 96.88 96.87 9632 96.25 96.23

AS8. Supplementary Experiments/Applications

A8.1. Texture Experiments

As shown in Fig. 4, the experiment is executed on dataset
KTH-TIPS', a typical benchmark for texture image classi-
fication. This dataset has 10 classes, each containing 81
instances, the total size is 10 x 81 = 810, and hence is
considered as a small-scale vision problem.

As shown in Table Al, we list performance scores of
the competing representations on this benchmark, as well
as the elapsed time, i.e., CPU featuring time or GPU train-
ing time. Besides this direct protocol on the original dataset,
we also consider testing image variants with random orien-
tation (w.rt. {0,90, 180,270} degree) or flipping (w.r.t. x
or ¥ axis).

e The classical (over-)complete representations fail to
achieve a satisfactory level of discriminability, even in the
direct protocol of such small-scale benchmark.

e The learning CNN family achieves significantly higher
scores due to its over-complete and data-adaptive prop-
erties, especially the AlexNet and VGGNet with large-
scale pre-training and transfer learning. Whereas, the
SimpleNet performs relatively poorly, indicating the sen-
sitivity of learning to network size and training strat-
egy. Under the variant protocol, they exhibit a significant
performance degradation, suggesting the learned features
lack invariance w.r.f. natural geometric variations of tex-
ture. After introducing the augmented training, the CNN
scores become more stable, but at the cost of discrim-
inability. A potential reason for this phenomenon is the
small amount of training data. Moreover, the computa-
tional cost is considerable for this small-scale problem,
and a certain training instability is observed.

Uhttps://www.csc kth.se/cvap/databases/kth-tips/index.html

Table A2. Classification scores (%) and runtime (second, for
train./test. = 8/2) for different representations on a large-scale par-
asite benchmark.

Time Train./Test. = 8/2 Train./Test. = 1/9

Method " Gpyt Pre. Rec. FI  Pre. Rec. FI

Classical:

Cosine 37 36.19 3260 29.85 4940 4197 43.80
Wavelet 39 41.68 4520 41.79 53.69 4797 49.27
Kraw. 42 66.56 6949 6721 71.60 57.88 61.10

Learning:
SimpleNet 2244+ 90.15 89.25 89.65 84.51 76.14 78.84

AlexNet 17961 98.87 98.40 98.63 9592 94.69 95.27
VGGNet 91841 99.24 9897 99.11 9795 9737 97.65

Invariant:
ScatterNet 1277  68.41 69.71 67.55 7252 6330 65.70
HIR 823 88.73 92.18 90.10 91.26 88.76 89.85

* The scattering networks provide a high level of discrim-
inability and robustness without feature training and data
augmentation, indicating the success of extending classi-
cal wavelets to deep representations.

* Our work further extends such success: the HIR achieves
a similar level of discriminability as the learning CNN
family, while exhibiting superior robustness in the variant
protocol than all competing representations. In particu-
lar, such representation success build on our compact and
efficient framework, with lower runtimes than scattering
networks and learning CNN family.

A8.2. Parasite Experiments

As shown in Fig. 4, the experiment is executed on micro-

graphic dataset’, a typical benchmark for parasite image

classification. This dataset has 6 parasite classes and 2 host
classes, with real-world diversity regarding imaging, back-

ground, morphology, and geometry, the total size is 34298,

and hence is considered as a large-scale vision problem.

As shown in Table A2, we list performance scores and
elapsed times of the competing representations on this
benchmark. Note that we also consider a protocol with dif-
ferent training-testing ratios to analyze the data dependence
and sample efficiency.

* In this large-scale problem, the scores of the classical
representations drop further, implying a limited level of
discriminability. On the other hand, their performance is
relatively stable when training samples are reduced, and
even better in the 1/9 case, indicating a good efficiency.

* In the learning CNN family, the direct-learning Sim-
pleNet exhibits a clear data dependence. Specifically, it
achieves ~90% scores in the 8/2 case (similar to HIR),
while the scores drop significantly in the 1/9 case (below
than HIR). In contrast, the AlexNet and VGGNet achieve

Zhttps://data.mendeley.com/datasets/38jtn4nzs6/3
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Figure Al. A comparison of adversarial perturbation forensic
scores (F1, %) w.r.t. current forensic solutions on the UP bench-
mark.

good discriminability and stability in the 1/9 case, reveal-
ing that the transfer strategy effectively inherits the pre-
training prior on ImageNet. On the other hand, the cost
of pre-training and transfer learning is still considerable,
without guaranteed robustness or adaptability for a given
data domain.

» Despite outperforming the original wavelets, scattering
networks fail to provide a competitive discriminability
in the era of deep learning. Here, the common failure
of such hand-crafted representations on larger-scale dis-
criminability can be regarded as important evidence for
our motivation.

* The HIR achieves a SimpleNet-level discriminability,
outperforming our competitor scattering networks signif-
icantly. Also, the HIR is not sensitive to the reduction of
training samples, outperforming the learning CNN fam-
ily in data dependence and sample efficiency. Note that
the discriminability of the fixed features from HIR is
still lower than the transfer learning with large-scale pre-
training. Therefore, in the next applications, the HIR fea-
tures will be empowered with data adaptability strategies
in Section 3.2.

A8.3. Adversarial Perturbation Forensic Applica-
tions

As shown in Fig. 5, the dataset ImageNet’ is perturbed
through 6 adversarial methods®, i.e., BIM [17], CW [7],
Damage [8], FGSM [16], PGD [21], and UP [23], respec-
tively, resulting in 6 benchmarks, each containing 5000
clean images and 5000 perturbed versions. This task ex-
hibits real-world discriminative challenges, in light of the
rich variability of the perturbations themselves and the un-
derlying ImageNet.

In Fig. A1, we first provide a comparison with the cur-
rent solutions of perturbation forensics on the basic and re-
alistic UP benchmark. Despite the fixed perturbation pat-
tern, there are still competing methods failing to achieve
good scores. Such methods are with under-complete repre-

3https://www.image-net.org/
“https://github.com/Harry24k/adversarial-attacks-pytorch

Table A3. Adversarial perturbation forensic scores (F1, %) for
different representations w.rt. various types of perturbations.

Method BIM CW DAmage FGSM PGD UP AVG MIN

Classical:

Cosine NN 34.63 33.19 90.78 39.80 34.69 222 3922 222
Cosine SVM 79.57 8334  97.26 78.24 7922 96.68 8572 7824
Wavelet NN 0.00  0.00 0.00 0.00 0.00  0.00 0.00 0.00
Wavelet SVM  72.83  82.09 97.77 7821 71.80 95.87 83.10 71.80

Kraw. NN 66.43  66.49 90.86 6643 6644 0.00 5944 0.00
Kraw. SVM 0.00 55.87 0.00 56.44  0.00 7037 3045 0.00

Learning:
SimpleNet 424 324 92.13 49.89 33.13 99.86 47.08 3.24
AlexNet 90.20 7272 96.63 94.61 9091 9845 90.59 72.72

VGGNet 96.04  62.50 99.08 98.12  96.99 99.15 91.98 62.50
GoogLeNet 90.29  80.04 97.09 9529 89.94 9875 9190 80.04
ResNet 90.22  75.59 97.35 94.66 90.17 98.40 91.07 7559
DenseNet 98.93  90.19 99.34 99.23 9885 99.76 97.72 90.19
InceptionNet 98.70 85.14 97.38 97.32  98.66 99.41 96.10 85.14
MobileNet 92.51 82.67 97.37 96.81  92.10 98.19 9327 82.67

Invariant:

ScatterNet NN 81.30  70.23 95.27 91.17 82.65 94.64 8588 7023
ScatterNet SVM  84.40  69.49 96.77 90.57 8386 95.12 86.70 69.49
HIR NN 89.66 84.92 98.89 93.26  90.08 97.78 9243 84.92
HIR SVM 9230 89.10 99.30 9596 91.60 98.93 9453 89.10

sentations, and thereby unable to comprehensively capture
perturbation patterns. In contrast, over-complete arXiv’23
and our HIR all achieve > 90% scores, further revealing the
fundamental role of representation in forensic tasks. Thus,
we will next further compare relevant representation strate-
gies.

In Table A3, we train and test all representations on the
6 benchmarks, presenting the corresponding F1 scores, as
well as the average and worst score statistics. This protocol
exhibits richer intra-class variability over the fixed pertur-
bation.

* The frequency difference between natural and perturbed
data is a fruitful forensic clue. Therefore, the classical
(time)-frequency representations achieve higher scores
than generally expected on this large-scale problem.
However, such features exhibit significant sensitivity to
classifiers. A potential reason is the restricted separabil-
ity, where one must resort to complex classification strate-
gies in the feature space.

* In the learning CNN family, all large-scale networks ex-
hibit > 90% average scores, especially DenseNet and In-
ceptionNet. The phenomenon suggests that the transfer
learning is good at capturing discriminative features with
sufficient training data and aligned testing protocol. As
for the attacks, the CW is more challenging and domi-
nates the worst scores, mainly due to its variable and weak
patterns.

* The scattering networks achieve similar scores and much
better classifier stability than the original wavelets, sug-
gesting an improvement in the separability. However, its
average scores did not reach 90%, failing to provide a
similar level of discriminability as learning CNNs.

* Our HIR is very robust to classifier changes, also achiev-
ing a MobileNet-level of discriminability, slightly lower



Table A4. Adversarial perturbation forensic scores (%) for differ-
ent representations on a real-world (hybrid) benchmark.

Train./Test. = 5/5

Train./Test. = 1/9

to guarantee their validity for under-sampled perturbation
patterns.

The scattering networks basically continue the discrim-
inability level and classifier stability from Table A3. Note
that its scores in the 1/9 case are higher than most clas-
sical and learning representations, reflecting the superior
performance in both discriminability and efficiency.

In this challenging protocol, the hand-crafted HIR still
achieves a learning-level discriminability and consis-
tently outperforms scattering networks. More impor-
tantly, our HIR is significantly less dependent on training
samples than learning CNNs, meaning it can better cope
with under-sampled perturbation patterns in practice. For
the AIGC forensic task, the comprehensive advantages
of HIR over learning CNNs will be further highlighted,
in robustness, interpretability, discriminability, and effi-

Method Pre. Rec. F1 Pre. Rec. F1

Classical:

Cosine NN 0.00 0.00 000 0.00 000 0.00
Cosine SVM  79.08 73.33 76.10 81.13 68.79 74.45
Wavelet NN 0.00 0.00 000 0.00 000 0.00

Wavelet SVM  77.53 6695 71.85 76.05 61.13 67.78

Kraw. NN 50.53 15.22 2340 50.00 15.10 23.20
Kraw. SVM  50.03 6534 56.67 49.75 48.77 49.26

Learning:

SimpleNet 4731 4811 4771 5059 63.63 56.36
AlexNet 81.46 8735 8430 7224 6136 66.35
VGGNet 81.41 90.04 8551 7883 7535 77.05

GoogLeNet 8274 8546 84.08 6335 57.74 60.42
ResNet 80.93 84.70 82777 6848 66.64 67.55
DenseNet 87.92 9325 9051 82.07 8396 83.00

InceptionNet  84.60 9092 87.65 69.58 70.77 70.17

MobileNet 83.07 88.07 8550 68.73 69.50 69.11
Invariant:

Scatter. NN 69.85 68.94 6939 7493 7731 76.10
Scatter. SVM  75.70 72.07 73.84 76.42 78.63 77.51

HIR NN 81.27 80.68 8098 79.09 82.17 80.60

HIR SVM 86.20 86.06 86.13 8342 8329 83.35

than DenseNet and InceptionNet, and significantly better
than the direct competitor scattering networks. Therefore,
our strategy has a better combined performance in robust-
ness, interpretability, and discriminability. Its efficiency
benefit will be highlighted in the next experimental pro-
tocol.

In Table A4, we train and test all representations on a hy-

brid of the 6 perturbation benchmarks, presenting scores at
two training-testing ratios. This protocol is more challeng-
ing due to very complex intra-class variability, while being
more practical for real-world forensic scenarios.

In line with previous observations, the classical represen-
tations still exhibit score fluctuations on the two classi-
fiers. We also note a performance degradation compared
to the case of Table A3, due to the discriminative chal-
lenges by this hybrid protocol. On the other hand, their
performance is stable w.rt. the reduction of training sam-
ples, further validating the inherent advantages in sample
efficiency.

Moving into this hybrid benchmark, the learning CNN
family yields consistent and large performance degrada-
tion, especially for the 1/9 case with fewer samples. This
phenomenon is direct evidence for the data dependence in
learning representations (even with transfer strategy). In
fact, real-world forensics often face the situation where
the perturbation types are diverse and some of them lack
samples. Therefore, such data-dependent forensics typi-
cally exhibit time-consuming (re-)training, while failing

ciency.
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