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Abstract—With the rapid proliferation of digital image content
and advancements in image editing technologies, the protection
of digital image authorship has become an increasingly important
issue. Traditional methods for authorship protection include
registering authorship through certification organization, utiliz-
ing image metadata such as Exchangeable Image File Format
(EXIF) data, and employing watermarking techniques to prove
ownership. In recent years, blockchain-based technologies have
also been introduced to enhance authorship protection further.
However, these approaches face challenges in balancing four
key attributes: strong legal validity, high security, low cost,
and high usability. Authorship registration is often cumbersome,
EXIF metadata can be easily extracted and tampered with,
watermarking techniques are vulnerable to various forms of
attack, and blockchain technology is complex to implement and
requires long-term maintenance.

In response to these challenges, this paper introduces a new
framework Hard EXIF, designed to balance these multiple
attributes while delivering improved performance. The proposed
method integrates metadata with physically unclonable functions
(PUFs) for the first time, creating unique device fingerprints and
embedding them into images using watermarking techniques. By
leveraging the security and simplicity of hash functions and PUFs,
this method enhances EXIF security while minimizing costs.

Experimental results demonstrate that the Hard EXIF frame-
work achieves an average peak signal-to-noise ratio (PSNR) of
42.89 dB, with a similarity of 99.46% between the original and
watermarked images, and the extraction error rate is only 0.0017.
These results show that the Hard EXIF framework balances
legal validity, security, cost, and usability, promising authorship
protection with great potential for wider application.

Index Terms—Authorship protection, metadata, device finger-
print, physical unclonable functions, watermarking.
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I. INTRODUCTION

HE rapid proliferation of digital image content and

significant advancements in image editing technologies
have markedly transformed the landscape of digital media.
As digital imaging devices become increasingly prevalent and
accessible, the daily volume of digital images has surged.
Concurrently, sophisticated image editing software has em-
powered users to modify and manipulate digital images easily.
While fostering creativity and innovation, this dual evolution
has introduced profound challenges in protecting digital image
authorship. Impersonation becomes easier and the uniqueness
of evidence is threatened, leading to a decrease in the legal
effectiveness of common methods of authorship protection. In
the event of a dispute over authorship, it becomes more diffi-
cult to obtain evidence. Therefore, ensuring the uniqueness and
legal interpretability of digital image authorship has become
increasingly important.

A core issue in digital image authorship protection is
providing indisputable proof of ownership, especially in legal
disputes [1]. The initial method of protecting authorship is
to register with relevant authoritative third-party organizations
and submit relevant materials regarding the author and image
information. After the publication period expires and there
are no objections, the authorship registration organization
will temporarily register the work and issue an authorship
registration certificate to the applicant, usually indicating the
work name, registration date, author name, and registration
number. Finally, the authorship registration agency records and
archives the registration information as the legal basis for the
authorship of the work, thereby achieving proof of ownership.
This type of evidence is highly legally valid and tamper-
resistant in a court of law, but it is not a friendly method due
to the extremely high time and labor costs required. The fact
that it takes months or more from the time a creator submits
a registration until they receive proof of registration does not
work for creators who need proof in a hurry. For individual
creators, this approach is poorly cost-effective and, as the
number of images proliferates, it becomes clear that submitting
a registration for every single image is inappropriate.

To reduce costs, metadata-based methods for author rights
protection have been proposed. Metadata provides a descrip-
tion of an image’s content, hardware source, and attributes.
Therefore, the shooting information and hardware details
embedded in the image metadata can be utilized for author
authentication. The main advantages of metadata-based author
rights protection methods lie in their simplicity and low cost,



as metadata is inherently stored within the image file. How-
ever, with the widespread availability of metadata extraction
software, users can easily access plaintext metadata from
images, which introduces security vulnerabilities. Metadata
can be tampered with freely without leaving any detectable
traces, making it susceptible to unauthorized modification.
To mitigate these security risks, metadata is often combined
with other technologies, such as watermarking [2], which
enhances tamper resistance but reduces some of the advantages
of metadata, particularly in terms of its simplicity [3] and legal
effectiveness.

Digital watermarking [4] is a technology that embeds iden-
tification information into multimedia files through algorithms
without affecting the original multimedia value and usage.
The information embedded in this way is often not directly
perceived by users and can withstand certain attacks. Digital
watermarking technology can embed author information and
other information into original images as evidence in case of
copyright disputes. Whether the carrier data is modified or not,
watermarking algorithms can be divided into zero watermark-
ing [5] and non-zero watermarking. Zero watermarking refers
to the watermark embedding process that does not modify
the original image data to ensure the quality of the image
is not compromised. Non-zero watermarking corresponds to
a watermark embedding algorithm that modifies image data.
According to the observability of watermarking, they can
be divided into visible [6] and invisible watermarking [7].
Invisible watermarking has good concealment but poor robust-
ness against specific attacks. Watermarking has a certain legal
effect when used as evidence and is easy to verify. However,
embedding a watermark will impact the original image, and
some operations or attacks on the image will also affect the
effect of the watermark, which in turn will affect its legal
effect. To improve the security of watermarking algorithms,
creators choose more complex embedding locations, such as
the Speeded-Up Robust Feature (SURF) region, and design
more complex processes, but this also increases the overhead.
Since the embedding and extraction of watermarking are
opposite processes, the corresponding verification process will
also be more complicated. If the authorship information or
metadata information is directly used as a watermark, there is
also the possibility of identity leakage and impersonation. With
the advancement of deep learning techniques, a number of
deep image watermarking methods [8] [9] have been proposed,
offering improved imperceptibility and robustness. However,
their practical applicability remains limited due to two key
challenges: insufficient resilience against compression-based
attacks such as JPEG, and the substantial training and compu-
tational resources required for deployment. These constraints,
along with the relatively high technical barrier to use, hinder
the widespread adoption of deep watermarking in real-world
scenarios.

The copyright chain [10]-[12] is a decentralized authorship
management system built on blockchain technology, designed
to offer a tamper-proof and transparent solution for copyright
registration and transactions. Creators can upload their orig-
inal content (e.g., articles, music, pictures, etc.) in the form
of Hash and permanently record the copyright information

of the content on the blockchain, including the creator’s
identity, the time of publication of the work, and the hash
value of the work. Once uploaded, this information cannot
be tampered with, which ensures that the creator’s work
can be confirmed and can be used as strong evidence in
case of authorship disputes [12]. Furthermore, by integrat-
ing smart contracts, the copyright chain automates copyright
transactions and authorization processes, reducing associated
costs. A core advantage of the copyright chain is its strong
resistance to tampering. In traditional centralized copyright
registration systems, databases are susceptible to hacking or
internal manipulation. However, the blockchain’s decentralized
node structure and consensus mechanisms ensure that once
data is recorded, it cannot be altered; any modification would
be detected and rejected by the entire network, significantly
enhancing data security. Nonetheless, its implementation poses
certain challenges, particularly when handling large volumes
of work or frequent transactions, as blockchain networks may
incur high storage and computational costs. Additionally, the
complexity of blockchain technology may create technical
barriers for ordinary users, potentially hindering its widespread
adoption.

With the development of authorship protection technology,
people have begun to pay attention to the importance of
hardware characteristics [13]. Traditional authorship protection
technology mainly records hardware information rather than
utilizing hardware characteristics. PUF [14]-[16] is a unique
hardware-oriented security primitive that does not rely on
the complexity of key-based algorithms or intractable math-
ematical problems as a basis for trust establishment. PUFs
utilize subtle mismatches or disturbances in the electrical
characteristics of identically designed circuits due to un-
avoidable and uncontrollable variations in physical parameters
during the fabrication of nanoscale devices [17]. PUF can be
mathematically modeled as an irreversible mapping of input
challenge to output response. Challenge-response pairs (CRPs)
are unique for different chips on the same wafer and across
wafers, making PUFs an ideal “device fingerprint” [18], which
can be used as an important basis for authorship protection.

Overall, metadata technology cannot be directly used as a
forensic method due to its inability to resist advanced editing
tools and attacks. Although metadata and watermarks are
widely used, they may be subject to targeted tampering and
deletion, reducing their validity as proof of authorship and
leading to reduced legal validity. High-security solutions such
as blockchain technology tend to be both expensive and com-
plex, with a high cost of use, while more economical solutions
often lack robustness and user-friendliness. When collecting
evidence, the evidence chain formed by the above methods
did not fully cover the three important pieces of evidence
information: metadata, hardware, and image content. The
method proposed in this paper achieves authorship protection
by utilizing metadata information and hardware characteristics
to obtain a unique hardware fingerprint and embedding it into
image content. Using the EXIF extension as a PUF challenge,
embedding the PUF response as a watermark into the image
that needs to be protected, and achieving satisfactory legal
validity, security, cost, and usability.



Copyright registration

m Register % Distribute

T

N /i
: Metadata extension :
| s T T T T T AN
| f i
| Author : O / 1
| ’ I
R~ Extract Date Encrypt : ¢ n
| | EXIF 1l
: Time I .. ::
\
| |
| N / I
SEeEERREELLLLL |
| Watermark |
I |
: B O —— \\:
i R — |
| A ! |
| Embed ,EZ. Extract | 1
| T | !
| | ! i
| - G0 ! I
|
| Se e 4 |
H_________ _________________ P _________________________\_I
| Copyright chain ( \II
| | |
| . | I
! m Submit O}W Record | 1
| I
| i i
\ |
L e T |
Fig. 1. The four commonly used authorship protection technologies.

We emphasize that the proposed framework is not limited
to a specific watermark embedding algorithm or a particular
implementation of sensor-based PUF generation. Our objective
is to establish a novel and extensible framework that system-
atically addresses the problem of authorship protection.

Our contributions are:

o We propose a novel and scalable authorship protection
framework that, for the first time, integrates metadata,
hardware characteristics, and watermarking techniques to
generate an accurate and reliable chain of evidence.

o We solve the problem of metadata tampering by using
hash functions to extend metadata, providing stable input
for subsequent authentication. By using advanced sensor
PUFs, utilizing hardware features to provide unique fin-
gerprints, and embedding them into images using water-
marking, the security and trustworthiness of the evidence
chain are enhanced.

e The proposed framework achieves an average PSNR
of 42.89 dB on the dataset, and the average similarity
between the original image and the watermark image is
99.46%, with a bit error rate (BER) of only 0.0017. At the
same time, it has been verified that it has good robustness
and tamper resistance under various attacks, showcasing
a complete chain of evidence in case of disputes.

II. RELATED WORK

Firstly, we review the existing authorship protection work
and analyze the existing technologies, summarized by Table I
and Fig.1.

TABLE I
COMPARISON OF EXISTING AUTHORSHIP TECHNOLOGIES. T INDICATES
THE HIGHEST DEGREE, — INDICATES A MODERATE DEGREE, AND |
INDICATES THE LOWEST DEGREE.

Legal effect  Tamper resistant ~ Cost  Usability
Copyright registration T T T T
Metadata extension — 1 1 T
Digital watermark — — — —
Copyright chain — T T 1
Hard EXIF T T - T

A. Copyright Registration

Copyright registration is a formal method for protecting
digital image rights by gaining legal recognition through a
copyright authority. This process involves submitting detailed
information about the work, including creation details, author
identification, and ownership declarations. The primary advan-
tage of copyright registration is its strong legal validity, widely
accepted across global legal systems, making it a powerful
tool in legal disputes. However, the process can be costly
and time-consuming, involving application, documentation,
and potential legal fees, which may limit accessibility for
individual creators and small enterprises. The complexity and
time required for registration may also deter creators from
using this method, and verifying registration during legal
disputes can also be labor-intensive.

B. Metadata Extension

Metadata [19] [20] describes the content, source, and at-
tributes of a file. In digital images, metadata is typically
stored in the file’s header or footer, such as EXIF data in
JPEG formats. EXIF, a widely recognized standard, includes
details like camera settings, shooting parameters, and au-
thor identification. Modern cameras and smartphones often
add geographic location information (GPS coordinates) when
capturing images. In digital forensics, EXIF data can verify
the time, location, and equipment used to capture an image,
aiding in confirming its authenticity and integrity. However,
the reliability of EXIF data as legal evidence is limited.
The widespread availability of tools to modify EXIF data
undermines its credibility, and courts are cautious in accepting
it as standalone proof, often requiring additional corrobora-
tive evidence. Moreover, most modern devices capture only
limited EXIF information, and users frequently overlook its
importance. When images are uploaded or processed, EXIF
data can be stripped away, reducing its value as evidence.
For security, EXIF data is vulnerable to tampering, and while
cryptographic digital signatures or blockchain methods [21]
have been proposed, they face compatibility issues with editing
tools and privacy concerns. Integrating these security measures
directly into camera hardware remains a challenge. From a cost
perspective, using metadata for authorship protection is rela-
tively economical since it is automatically generated. However,
its security vulnerabilities [22] and limited legal acceptance
may render it less viable, particularly when considering the
costs of verifying tampered metadata during legal disputes.
In terms of usability, EXIF metadata is easily accessible
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Fig. 2. The framework of Hard EXIF

with standard software but is also easily modified, which
compromises its reliability. While a basic understanding of
EXIF data is straightforward, verifying its authenticity in legal
contexts can be complex and may require forensic expertise,
limiting its practicality for robust authorship protection.

C. Digital Watermark

Digital watermarking is a widely adopted technology for
embedding hidden information into digital content, serving
purposes like authorship protection, information security, and
data integrity verification. It is categorized into visible [23] and
invisible [24] watermarking, each addressing different needs.
Visible watermarks are used for explicit copyright notices by
embedding logos or text into content, while invisible wa-
termarks embed imperceptible information to protect content
without altering its appearance.

Watermarking techniques are further divided into time-
domain and frequency-domain approaches. Time-domain wa-
termarking directly embeds and extracts watermarks from
the original pixel data using simple algorithms but suffers
from limited robustness. Frequency-domain watermarking,
on the other hand, embeds watermark information within
frequency-domain coefficients using methods like Discrete
Cosine Transform (DCT) [25], [26] and Discrete Wavelet
Transform (DWT) [27], offering enhanced resistance to attacks
and greater stability. Advanced methods embed watermarks
into image moments—mathematical [28] constructs captur-
ing the shape and geometry of images—using techniques
like Zernike moments (ZM) [29], Polar Harmonic Transform
(PHT) moments [30] [31], which provide higher resilience
against various attacks. With the advent of deep learning,
invisible watermarking techniques leveraging machine learn-
ing have gained prominence. Deep Convolutional Neural
Networks [8], [9], [32] enable watermark embedding that
maintains visual quality while ensuring detectability by trained
networks. Generative Adversarial Networks (GANs) [33] [34]
further improve watermark concealment through adversarial
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training. However, these advanced techniques require signifi-
cant training resources and are vulnerable to white-box attacks.
More recently, watermarking research has extended into Al-
generated content (AIGC), such as text-to-image [35], text-
to-audio [36], and video synthesis [37]-[39], where signals
are embedded during generation to indicate model identity or
prompt ownership. These approaches aim to trace content back
to the generative model, offering attribution in purely digital
pipelines. Future watermarking frameworks may need to sup-
port cross-model [40] embedding and verification mechanisms,
share attribution information among multiple modalities [41]—
[43], and establish trusted anchors at the generation model or
device end.

The legal validity of digital watermarking, particularly for
invisible watermarks and those generated by deep learning
models, is constrained by current legal frameworks. While
visible watermarks are more readily accepted as evidence, their
visual representation of personal information introduces addi-
tional challenges. Images with visible watermarks bring visual
modifications to the image itself as well, and visible watermark
removal is currently possible using deep learning techniques.
Invisible watermarks, on the other hand, typically require
supplementary verification to attain legal enforceability. The
security of digital watermarks is contingent upon the robust-
ness of embedding techniques against image manipulation and
attacks. Matrix-based and deep learning techniques generally
offer enhanced security as they integrate the watermark more
deeply into the image structure or leverage complex models,
making removal more challenging. However, advanced hybrid
attacks [44] may still compromise these watermarks.

In terms of cost, time-domain techniques [45] are cost-
effective due to their simplicity, whereas deep learning ap-
proaches incur higher costs owing to their complexity and
resource demands. The availability of watermarking methods
also varies: spatial domain-based watermarking techniques,
such as the Least Significant Bit (LSB) [46] technique, are
easier to implement. The use of deep learning methods, on the
other hand, requires specialized knowledge and tools. While



deep watermarking can often maintain visual quality, the em-
bedding and verification process, especially in the context of
forensics, can be time-consuming and technically demanding,
limiting its usefulness in large-scale author protection.

D. Copyright Chain

The copyright chain is a blockchain-based system [11],
[47]-[49] for digital authorship protection, offering decen-
tralized, tamper-resistant, and transparent management [50],
[51]. It uses blockchain’s distributed ledger and smart con-
tracts to record copyright information securely, ensuring the
authenticity and traceability of records. The process begins
with the creator generating a digital fingerprint and rele-
vant authorship details [21], which are then recorded on the
blockchain, creating an immutable copyright identifier. Any
subsequent actions, such as authorizations or transfers, are also
recorded, enabling full traceability. While the decentralized
and untamperable nature of blockchain supports legal validity,
challenges remain in the legal acceptance of blockchain-based
evidence. In terms of security, blockchain provides strong
tamper resistance, but concerns remain about scalability and
performance. Concerning cost, the copyright chain reduces
reliance on third parties, lowering overall costs. However, the
initial setup and maintenance of the system may be costly.
Usability is also a challenge, as managing blockchain trans-
actions and smart contracts requires specialized knowledge.
Despite these challenges, the copyright chain shows promise
for the future of authorship management, pending further legal
recognition and technical advancements.

III. THE PROPOSED APPROACH: “HARD EXIF”

The Hard EXIF is composed of three key stages, as il-
lustrated in Fig.2. Firstly, metadata is hashed, which is a
challenge putting into the CMOS sensor PUF. Second, the
unique response is obtained through the properties of PUF.
Finally, the response is embedded into the feature region of
the image by using watermark technology, which realizes the
triple utilization of the image metadata, content, and hardware.

A. Metadata Processing

When an image is captured, EXIF data is automatically
generated by the digital camera or smartphone and embedded
into the image file. The process begins when the shutter button
is pressed. The camera captures the light signal received by
the image sensor and converts it into digital image data.
Simultaneously, the camera’s firmware collects various details
related to the capture, including the make and model of
the camera, the date and time of the shot, exposure time,
aperture value, ISO sensitivity, focal length, flash status, and
geographic location (if GPS is supported). These details are
organized into a structured block of metadata, known as EXIF
data, which is embedded in the image file’s header. Although
other metadata formats exist, such as the International Press
Telecommunications Council (IPTC) and Extensible Metadata
Platform (XMP), our framework primarily utilizes EXIF data
but can be extended to incorporate additional formats.

Once the EXIF data is generated, it is processed using a
hash function to produce a fixed-length hash value, ensuring its
integrity and uniqueness. A hash function converts an input of
arbitrary length into a fixed-length output, typically resulting
in an n-bit hash value (in this paper, a 256-bit hash). The
result is a unique EXIF hash code that is subsequently used
for hardware binding. The discussion of hash length will be
given in the experimental section.

B. Binding Hardware Information Using Sensor PUFs

To avoid the complexities of traditional image processing
techniques, our approach leverages CMOS image sensor-based
PUFs that utilize the inherent FPN of the sensor to generate
unique digital signatures for each device. FPN arises due
to manufacturing variations in the sensor’s pixel array and
readout circuits. Although FPN is typically divided into PRNU
[52] [53] and DSNU, we focus primarily on DSNU [14] [15]
[54] for its ability to generate reliable signatures even in low-
light conditions.

Our PUF design is inspired by the methodology presented
in [15]. Initially, a circuit switch is closed to reset the capacitor
and sample the input offset of the operational amplifier.
Following this, the reset pixel is activated, and its voltage is
sampled. The amplifier’s output, the difference between the
reset and signal voltages, forms the basis of the PUF’s digital
signature. During PUF operation, the reset pixel output voltage
is read directly. To enhance the precision and reliability of
this design, we integrated a bypass transistor in parallel with
the correlated double-sampling circuit. As mentioned earlier,
this configuration allows PUF mode to bypass CDS, which is
crucial for maintaining the randomness and uniqueness of the
PUF response. In normal sensing mode, the bypass transistor
is off, and the CDS functions by subtracting the reset signal
from the capacitor at the column level, thereby reducing FPN.
Due to the lossless readout capability of CMOS image sensors,
operating the image sensor in PUF mode does not affect
its original functionality. Compared to approaches that rely
solely on metadata and hash functions, the incorporation of a
sensor PUF enables all verification procedures to be executed
internally within the sensor hardware. This provides intrin-
sic tamper resistance without the need for external storage
or validation, ensuring a streamlined and secure authorship
verification mechanism.

In our implementation, as illustrated in Fig.2, the EXIF data
generated during image capture is encoded to form a hash
sequence C',, which serves as the challenge for the PUFs.
The address decoder decodes C, to retrieve pixel voltages,
while an additional internal challenge, C,, is generated by an
n-bit Linear Feedback Shift Register (LFSR), initialized with
a user-selected n-bit seed N (0 < N < 2™), typically derived
from the timestamp Ts;qmp at the time of image capture.

The LFSR generates the internal challenge pairs C,, and
Cyy, which are applied to the CMOS image sensor array to
localize a pair of active pixel sensors. The corresponding reset
voltages Pc,, and Po , are read by disabling the associated
dual sampling circuit and then compared to generate the
response bit w (watermark). The output bit w is determined
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as 0 or 1 based on whether the difference between P¢,, and
Pc, exceeds the empirically determined threshold P. If
the difference surpasses Py, the bit is considered stable and
retained as the response bit. Otherwise, the LFSR generates a
new challenge, repeating the process until a stable CRP is iden-
tified or the pixel matrix is fully utilized. The threshold P;j, is
calibrated to adjust noise tolerance, ensuring stable response
bits despite variations in temperature, voltage, and time. This
unique CRP mapping for each PUF instance guarantees a
high degree of uniqueness, enabling precise differentiation of
individual cameras across different models and brands.

C. Embedding Hardware Fingerprints

Watermark embedding is divided into two steps. Firstly,
SUREF features are used to select feature regions, and secondly,
watermark embedding in PHT moments is performed on these
feature regions. The flowchart has been provided by the Fig.3.

1) Feature Region Selection: SURF [55] is a highly effi-
cient local feature detector and descriptor that builds upon
the Scale Invariant Feature Transform (SIFT) [56]. SURF
offers significant advantages in terms of scale, translation,
illumination, contrast, and rotation invariance, outperforming
SIFT and other widely used feature extractors. SURF identifies
feature points by locating the extrema of the Hessian matrix
determinant within the scale space. The resulting feature
descriptors are both rotationally and scale invariant. To en-
hance computational efficiency, the SURF algorithm employs
a box filter rather than a Gaussian filter, allowing the matrix
determinant to be expressed as

det (Happrox ) = DawDyyy — (0.9D4,)% (1)

where D, is the convolution of the approximate Gaus-
sian second-order derivative with the image I at the point
P = (z,y), and D,,D,, are similar. To generate the feature
description, the SURF extracts 4 x 4 rectangular blocks of
regions around the feature point, and each sub-region counts
25 pixel-points of Haar wavelet features in the horizontal
and vertical directions, which are the sum of values in the
horizontal direction, the sum of values in the vertical direction,
the sum of values in the horizontal direction in absolute terms,
and the sum of values in the vertical direction in absolute
terms in 4 directions. These 4 values are taken as the feature
vectors for each sub-block region. For each pixel in the image,
SUREF calculates the response value of that pixel at its scale
(and adjacent scales). SURF compares the response values of
each pixel with its neighboring pixels to determine if it is an
extremum point.

In the proposed method, we select feature regions by
identifying several optimal feature points based on SURF
feature points. These optimal feature points are prioritized
by sorting them according to their response values, which
are equal to the absolute value of the determinant of the
Hessian matrix, ensuring the prominence and stability of these
feature points within the image. For each selected feature
point, an appropriate radius is specified, centering the circular
region on the feature point. The radius is typically chosen
based on image resolution and practical requirements, ensuring
the circular region encompasses a sufficient number of pixel
points to characterize the local features of the feature point
effectively.

2) Embedding of Robust Watermarks and Reconstruction
of Watermarked Image: In practice, watermarking methods
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should be able to handle conventional signal processing op-
erations and geometric distortions. Invariant domain-based
watermarking is a method that has been proposed in recent
years to achieve this goal.

The PHT is a new kind of orthogonal moment defined on
the circular domain. The magnitudes of PHT are invariant to
image rotation and scaling. Compared to ZM, the computation
cost of PHT is extremely low. Besides, the PHT is free of
numerical instability issues so that high-order moments can
be obtained accurately. As a result, we believe PHT is more
suitable for watermarking. PHT is a generalized name for the
Polar Complex Exponential Transform (PCET), Polar Cosine
Transform (PCT), and Polar Sine Transform (PST). They have
been grouped under the name PHT because their kernels are
basic waves and trigonometric functions.

We use PCET as an example. First, we determine the
maximum order N and repetition M, which are two integers
greater than zero. The order n and repetition m of each
PCET moment A,,, should be satisfied: —N < n < Nand
—M < m < M. The general orthogonal moments are defined
by projecting the image onto the orthogonal kernel function,
which is denoted V,,,,(p,0) in this paper. In the unit circle
domain, the orthogonal kernel consists of a radial component

and a circular component:
Vam(p,0) = Ra(p)e™” = 20"’ @)

where R, (p) = €27’ s the radial part, e is the
circular part. Furthermore, the kernels satisfy the following
orthonormal conditions as

1 1
/ Ru()[Bor (0] plp = b
0

im0

3)

1, n=n'
5nn’ = » " (4)
0, n#n,
where [R,,/(p)]* is the conjugate of R, (p).
For image f(p,#), the PCET moment of order n with
repetition m is

1 2 1 ) 5 *
A, =t / / [ 0] f(p,0) pdpde. (5)
™ Jo 0

PHT is defined for analog images, for digital images, the
moments can only be obtained approximately. Therefore, we
need to choose the exact moments. Wang et al. [31] showed
that the moment of repetition m = 43 is unstable. The
orthogonality of the PCET moments is biased when j is an
integer and cannot be computed accurately from a discrete
image, and for conjugate moment pairs, only moments with an
orthogonal order or repetitions are used and the same operation
has to be done on the conjugate moments after the watermark
embedding. We take C' = {A,,;,, n < N,m > 0, m # 4j}
as the set of eligible PCET moments for embedding the
watermark.

It is important to note that some moments are conjugate.
From the definition of PHT, we know that for PCET moments,
the conjugate moments are: A, = A_,_,,. Due to the
orthogonal property of PCET, an image can be expressed
in terms of the moments, namely image reconstruction from
PCET. Based on the principle of amplitude embedding, we can
reconstruct the image with the watermark without affecting the
quality of the image itself by

f(p7 9) = Z Z Anmvnm(p’ 9)

Nn=—00 |[=—o0

(6)



To achieve a better watermark effect, this paper imitates the
advanced Quantization Index Modulation (QIM) watermark
embedding method in [30], one-bit watermark w is embedded
into the magnitude of PCET moment A,, ,,, as

QAL ,...s) x s+ 354+ D., ifw; =1
QAL .. 8) X s+ s+ De, ifw; =0

)

Pw
Mg, MG

where AL = = A, m, x T,i = 0,1,..,1. Based on
experience, T is generally taken as 100. s represents quan-
tization step length and is a positive even integer greater than

0 and Q(|ALv, |,s) = |Zeml) D, = |AP
||AF

T Jis the decimal part of A; ., which keeps un-
changed in the embedding process. We identify the image
reconstructed by the modified PHT moments and their con-
jugates as I,,,, which is computed as

| Pw
ng,Mmy

L

Irw - Az m; Ani.mi an,,fm,
; (i = At 8)

(A% = Apm) V_nm}

NG ,My

Finally, adding this impact on local area I of the original
cover image, the watermarked local area I,, can be obtained
as I, =1+ 1.

3) Watermark Extraction and Verification: After embed-
ding the watermark, we can get an embedded image with a
unique fingerprint, the fingerprint coding itself is meaningless,
and the attacker can not infer any information. However, hash
and PUFs, which are two strong one-to-one irreversible maps,
are bound by the authorship.

Due to both intentional and unintentional attacks, the trans-
mitted information through each channel may be interfered
with by different types of transmission noise. During the
detection process, we claim the presence of a watermark in
image [I,, if at least two copies of the embedded watermark
are correctly detected. Similarly, the image is first subjected
to the same circular region feature extraction as in embedding
to obtain the SURF feature points, the response value ranking
is performed to generate the circular region, the PCET within
the region are extracted, and the claimed moments An; m!
are screened with the same criteria as used for screening the
moments in embedding as

]-7 if Gn;,rn’l - Q(|An’l,m;|7s) XS Z %87

9
0, if Gn;’m; — Q(|An;’m;|,8) X s < %S, 2

w; =
where G/t = [[|An; m:| — /] + o and o = mod(s,4)/4.
Due to the multiple feature regions being embedded, the
extracted watermark information may vary. For this reason,
the extracted watermark information is corrected by a voting
mechanism. This method not only improves the robustness and
concealment of the watermark but also ensures the stability
and reliability of the watermark information in image pro-
cessing and geometric transformations, providing an efficient
and reliable technical means for image authorship protection.
Subsequently, when verifying the authorship identity, the EXIF
information of the original image containing the watermark

TABLE II
PSNR (IN DB) OF DIFFERENT QUANTIFY STEP s

Step s

Image

s=34 s=36 s=38 s=40 s=42 s=44
Lena 43.1 423 421 40.8  41.0 403
Barbara 428 421 432 41,6  41.0 409
Peppers 42.7 42.1 42.1 41.7 41.2 40.8
Car 482 488 496 492 490 488
Building 449 452 458 456 445 442
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Fig. 5. The impact of different EXIF extension lengths (watermark capacity)
on Hard EXIF framework. The average BER of short EXIF lengths is closer
to 0, but in some images, the BER is high, while the average BER of long
EXIF is high but remains within an acceptable range.

can be outputted as a response through the same process
and compared with the extracted watermark to determine the
authorship identity.

IV. EVALUATION AND DISCUSSION
A. Experiment Setup

In this section, we comprehensively analyze the Hard EXIF
framework from the legal effect, tamper resistance, cost, and
usability. Since legal validity is guaranteed by concealment
and anti-tamper ability, our experiment focuses more on these
two parts. The experimental dataset uses the Google Univer-
sal Image Embedding (GUIE) dataset. GUIE has a total of
130000 images, including real pictures of clothing, art, cars,
and landmarks, which meet our requirements for authorship
protection of real scenes. In this paper, we select 10K images
from the dataset for experimentation and use them as the test
set Dy.q for testing. Fig.4 shows the test dataset and process
images. To demonstrate the generality of the framework, an
image is presented for each type of input.

B. Concealment

For the proposed framework, the key parameters related to
concealment include 1) the extended hash length L of EXIF
is 256 bits, which is also used as the watermark capacity. The
impact of different watermark lengths on the framework is
shown in Fig.5, and the impact on security is analyzed later.
2) The feature area radius for watermark embedding is 32.
In Fig.6, it can be seen that although the small radius has
good concealment, the BER is high, and it does not have an
advantage in robustness and capacity. 3) The quantify step s
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Fig. 6. The impact of different radii on Hard EXIF framework. A smaller
radius has better image quality but a higher BER. Watermarked images with
a larger radius have a lower BER and better robustness.
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Fig. 7. Concealment assessment: PSNR, SSIM, and BER of the dataset.

is set to 38 as shown in Table II. 4) The maximum order N,
which determines the embedding capacity and computation
complexity of PCET is 50. 5) For robustness and invisibility,
we set the number of embedded circular areas @ to 8.

To evaluate the proposed method, we introduce PSNR and
Structural Similarity (SSIM). For the given dataset D;.st, we
obtain an average PSNR of 42.89, SSIM of 99.46%, and BER
of 0.0017, as shown in Fig.7, indicating that the proposed
method achieves high concealment without affecting image
quality.

C. Anti-tamper Analysis

For Hard EXIF, potential threats include tampering and imi-
tation of metadata, PUF attacks, and attacks on the watermark.

1) Metadata Security Analysis: The attacker attempts to
obtain the same hash vector by impersonating images and
carefully designing EXIF. To evaluate this difficulty, we use
information entropy H(z) to measure the randomness and
uncertainty of data, which is defined as

H(x) == plw;)logs p(xi),

i=1

(10)

where p(z;) is the probability of the symbol xz; appearing.
For EXIF extension data (i.e., hash data) of length L bits,
if we assume that each bit is an independent and uniformly
distributed binary bit, then the information entropy is H(x) =
L % (—0.51og, 0.5 — 0.5log, 0.5) = L. The difficulty of this
attack mainly depends on the value of L.
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Fig. 8. Uniformity: Measuring the randomness of each device by recording
the average of 0 and 1. The closer it is to 50%, the better the randomness.

In practical situations, due to the input space of hash
functions being much larger than the output space, there must
be situations where different inputs correspond to the same
output value, called hash collision. The probability of collision
when generating hash values for two different L-bit EXIF data
can be estimated through the birthday question. This problem
reveals that when a certain number of values are randomly
selected, there is a probability that at least two values are
the same. In this case, the collision probability G' can be
approximately expressed as:

_L(L-1)
Gr1l—e 2x2m

(1)

where m is the number of bits of the hash output. However, the
longer EXIF extension (hash) may not be a better fit for our
framework due to the limited watermark capacity. Considering
the robustness of the algorithm, we test the different lengths
(L = 128,256,512) of the image shown as Fig.5. It can
be intuitively seen from the figure that a BER of 128 bits
is higher, while a BER of 512 bits can accommodate more
information but is unstable. The length of 256 bits (watermark
length) is most suitable for our method.

At the same time, given the hash value, it is not easy to
reverse the original input data. This is because the unidirec-
tional nature of the hash function ensures that the attacker can
not recover the EXIF data from the hash value, and a small
change in the input will result in a significant change in the
hash value, ensuring that a small modification to the EXIF
data will change the entire hash value.

2) Imitation and Tampering of PUF: The premise of this
attack is that the opponent can launch attacks during the PUF
stage, imitate and impersonate the hardware used, disrupt the
original evidence chain, and gain an advantage in the evidence
stage. These attacks are analyzed through the attributes of PUF,
the difficulty of the attacks is evaluated, and the tamper resis-
tance of our framework is verified. Our work uses MATLAB
to design PUF and generate CRP. Assuming the sensor size is
64 x64, 1000 PUFs are simulated, with each PUF generating
240 challenge responses. To better verify the properties, we
have set a series of different thresholds P;;(0.01,0.02,0.03).
It should be noted that Py, here is used to enhance the security
of the framework, meaning that users can regenerate CRPs
through P, which is effective against some malicious attacks.
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Fig. 9. Uniqueness: Measuring the distance between responses generated by
different PUFs under the same challenge.

Unpredictability. The unpredictability of a PUF assesses
the difficulty an attacker faces in predicting its CRP. For
a well-designed PUF, the CRP should remain unpredictable
for any adversary, even with partial knowledge of existing
CRPs. This requires that the correlation between any two
CRPs generated by the same PUF is sufficiently low. The
unpredictability can be quantified by the entropy of the CRP
[57], where the maximum entropy is derived from the number
of independent output bits of the PUF, serving as an indicator
of its unpredictability. In the case of the proposed sensor PUFs,
the sensor comprises Np;zet = H x V' pixels, where H and V
are the number of rows and columns of the sensor, respectively.
Based on the reset voltages, there are Np;z;q;1 possible unique
orderings of these pixels. Assuming each ordering is equally
probable, the number of independent bits can be approximated
by IOgQ Npixel!~

For the proposed PUFs of a single 64x64 sensor, this
yields approximately log, 4096! = 45056 independent bits, or
about 11 bits per pixel, indicating that each pixel contributes
roughly 11 bits of entropy. To overcome the PUF by brute-
force means, an attacker would theoretically need to test
all possible bit combinations, requiring 245%°6 attempts, an
infeasible task. Thus, this analysis demonstrates that predicting
the CRP through exhaustive attacks is practically impossible,
affirming the resistance of the proposed PUF to cloning and
counterfeiting attempts.

Adversaries may also infer attacks from LFSR. The output
period of an LFSR depends on the order of its polynomial.
An n-bit LFSR has 27! states. The adversary needs to try
all possible seeds, and this has a complexity of O(2") e.g.,
for a 32-bit LFSR, the complexity is O(232). Second, the
complexity is further increased by the variation of timestamps,
which are computed when the image is generated, and if the
precision is in milliseconds, the adversary needs to try to
timestamp every millisecond, which is almost impossible.

Uniformity. In the context of modeling attacks, the assump-
tion is that an adversary can use a given set of CRPs to create
a model of the target PUF. With this derived model, other
CRPs can be predicted with high accuracy. In the proposed
method, it is challenging to derive an additive linear model
from the PUF due to the independence of reset voltages among
pixels in the pixel array. In PUF outputs with high uniformity,
modeling attacks need to deal with more complex patterns
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Fig. 10. Reliability: Measuring the distance and error rate of the response to
the same challenge under different influences.

because the occurrence of Os and 1s is unpredictable, and
the model needs to learn more complicated features. On the
contrary, if the output of PUF is uneven, attackers can capture
this bias through simpler models (such as linear models),
thereby improving the success rate of modeling.

To ensure the accuracy of the experiment, we test the
uniformity F' which measures the randomness of each device.
It is calculated as the average of all responses from each device
as

1 &

=5 ;‘) rpe, (12)
where C' denotes the number of bits in the response. Ideally, 0
and 1 should be evenly distributed to resist common machine
learning modeling attacks. After our test, as shown in Fig.§,
the average percentage of 0 is 50.12%, and the percentage of
1 is 49.87% with P, = 0.01, which is very close to the ideal
value of 50. This high degree of randomness means that PUFs
can effectively resist modeling attacks.

In the proposed method, the LFSR is integrated with the
image sensor core to encrypt the input challenges and restrict
direct access to the CRPs. The input challenges are encrypted
using an LFSR-based stream cipher (XOR) to determine the
address of the shadow pixel in the selected region. Different
seed values in the LFSR generate distinct random numbers,
rendering the original CRPs collected by an attacker invalid af-
ter a seed change. Additionally, by reconfiguring the properties
of the LFSR, such as modifying the characteristic polynomial
or EXIF data, adversaries find it significantly more difficult
to predict the proposed PUF output using current modeling
attack methods.

Uniqueness. Uniqueness measures the difference in re-
sponse between devices, and Hard EXIF requires sufficient
randomness between devices. It is proposed to measure the
difficulty of an attack when an adversary has the same hard-
ware but no matching hash vector, i.e. This property can be

measured by calculating U as
1S & D
—5> Y a-mc.on.r=(5) o
i=0 j=i+1
The HD function refers to the normalized hamming distance,
C refers to all responses of the devices, and D is the number



TABLE III
ROBUSTNESS COMPARISON OF HARD EXIF VARIANTS USING DIFFERENT WATERMARKING METHODS

Attacks/Variants Hard EXIF Hard EXIF + Hard EXIF +
(Ours) Method in [58] Method in [59]
Identity 0.0017 0.0128 0.0125
Rotation 1° 0.0028 0.0134 0.0050
Rotation 5° 0.0059 0.0076 0.0072
Rotation 10° 0.0067 0.0098 0.0088
Median Filter 0.0588 0.0731 0.0551
JPEG (q=50) 0.0256 0.0120 0.0085
JPEG (q=60) 0.0168 0.0185 0.0179
JPEG (q=70) 0.0095 0.0165 0.0121
Gaussian Noise (0=0.1) 0.0184 0.0145 0.0167
Gaussian Noise (0=0.15) 0.0194 0.0205 0.0225
Gaussian Noise (6=0.2) 0.0335 0.0432 0.0455
Scaling 50% 0.0132 0.0046 0.0042
Scaling 90% 0.0073 0.0011 0.0020

Fig. 11. Pepper images under different attacks : (a) Rotation 1° (b) Rotation
5° (¢) Rotation 10° (d) Median filter (e) JPEG compression (¢ = 50) (f) JPEG
compression (g = 60) (g) JPEG compression (¢ = 70) (h) Gaussian noise (o
= 0.1) (i) Gaussian noise (¢ = 0.15) (j) Gaussian noise (o = 0.2) (k) Scaling
50% (1) Scaling 90%

of devices. To achieve a balance between robustness and
imperceptibility, the ideal value of uniqueness should be close
to 0.5, which means that half of the response bit sequences
are different between devices.

Through the Monte Carlo simulation, generating CRP from
a large number of PUF instances, it is possible to estimate
the uniqueness of the PUFs, where each iteration applies
a set of PUFs with a unique pixel-voltage matrix to the
image sensor. For PUFs with different thresholds, we use the
same challenge to obtain different responses for testing. We
obtain a uniqueness U of 0.5694 with P,;, = 0.01 in Fig.9,
which indicates that the Hamming distance of the response
bit sequences between the different devices is slightly higher
than the length of the bit sequences by half. It means that the
response bit sequences between devices are more distinct, and
56 % of the bits in the response bit sequences of each pair
of devices are different. The high Hamming distance indicates
that each device’s PUF response bit sequence has a high degree
of randomness. As can be seen from Fig.9, even the worst
distances are close enough to 50 to show that our method

BER under Different Image Attacks for Robustness Evaluation
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Fig. 12. The robustness performance of the 5 test image groups under
Rotation, Median filter, JPEG, Gaussian noise, and Scaling attacks.

is feasible. An attacker cannot infer the responses of other
devices from known device responses, much less fully recover
the responses.

For brute force reverse cracking, the probability of an
attacker succeeding in mimicking the response of an instance
is extremely low because the response of each instance is sta-
tistically unique. The expected value of the Hamming distance
is 64x0.5694 ~ 36.44, i.e., the responses of different instances
are statistically different by 36.44 bits, which increases the
difficulty of the attack.

Reliability. It should be noted that since PUFs realize their
non-clonable nature through some physical features, they may
also receive physical attacks with effects that can change the
generation of CRP, so we introduce reliability to measure the
difficulty of this attack. S’ measures the reproducibility or
stability of a PUF’s CRP under different operating conditions.
The reliability of a PUF can be measured by its distance, which
can be characterized by comparing responses taken at different



TABLE IV
CORRECT EXTRACTION RATES (1-BER) OF DIFFERENT WATERMARKING VARIANTS ON THE COCO DATASET UNDER COMMON DISTORTIONS (MESSAGE
LENGTH = 64 BITS).

Distortion Type Deep Hard EXIF* ﬁi{ﬁoﬁfrlf[ 8-; ﬁi:ﬁoﬁff[;
Identity 99.28% 99.97% 99.99 %
Cropout (p=30%) 92.82% 94.78 % 91.96%
Crop (p=30%) 91.37% 95.25% 94.81%
Dropout (p=30%) 94.53% 92.92% 97.99 %
Resize (p=50%) 85.96% 89.41% 95.53%
JPEG (g=50) 95.51% 96.69 % 92.46%
Gaussian Noise (0=0.1) 97.98 % 97.12% 96.66%

times to a reference response to the same challenge:

x 100%, (14)

, 1 <~ HD(R;, R; ;)
e S

j=1
where R; is the standard response bit of the ¢-th PUF, we apply
the same set of challenges k times to the same PUFs, varying
the environmental conditions to obtain an n-bit response R; ;.

The experimental results indicate an average BER of
0.00155 under noise-only conditions and 0.00154 under
temperature-only conditions, as shown in Fig.10. These find-
ings validate the robustness of our differential readout ap-
proach against temperature and noise interference, suggesting
that physical environmental attacks have minimal impact on
the framework. In the reliability assessment, the framework
achieved a reliability rate of 97%, further demonstrating its
strong tolerance to both noise and temperature variations.
This indicates that potential physical attacks are unlikely to
compromise the PUF or significantly alter the CRP.

3) Watermark Attack: Due to the irreversibility of PUFs
and hash, it is not possible to infer EXIF metadata and
PUF responses through watermarking alone. This has been
analyzed in the previous section of the attack, and the focus
of the attacks in this section is to disrupt the chain of
evidence through common image-processing techniques rather
than direct forgery or impersonation. We test common image
manipulation attacks, including rotation, filtering, noise (o de-
notes the standard deviation of the noise), JPEG compression
(q denotes the quality factor used in JPEG compression), and
scaling. The attacked images are illustrated in Fig.11.

We employ the BER of the extracted watermark after
each attack as the robustness evaluation metric. As shown
in Fig. 12, the framework achieves a low BER under mild
perturbations including Identity (mean: 0.0184, std: 0.0034)
and Rotation 1° (mean: 0.0026, std: 0.0008), demonstrating its
stability under minor geometric transformations. For Rotation
5° and Rotation 10°, the BERs remain acceptably low (0.0059
and 0.0067, respectively) with minimal variance, indicating
resilience against moderate rotation distortions. In contrast,
Median filtering, which alters local structures and edge infor-
mation, results in a higher BER (mean: 0.0589, std: 0.0048),
reflecting its stronger destructive impact on feature-region-
based watermark embedding. These results confirm both the
statistical significance and the stability of the method under
diverse attack conditions.

To highlight the adaptability of our framework while eval-
uating robustness, we conduct a comparative analysis incor-
porating both traditional watermarking algorithms and deep
learning-based watermarking schemes. The distinguishing fac-
tor between these variants and the proposed Hard EXIF
framework lies exclusively in the watermark embedding and
extraction components. Specifically, Method [58] integrates
PCET with a logical mapping strategy, whereas Method [59]
adopts Fast Quaternion Generic Polar Complex Exponential
Transform (FQGPCET) approach. It is worth noting that
both methods derive their watermark inputs from response
signals generated via hash functions. Experimental results
in Table III demonstrate that the proposed strategy achieves
higher extraction accuracy than the two traditional variants
in the absence of attacks. This improvement is attributed
to our selective choice of feature regions and the inherent
rotation invariance of the PCET representation. However,
the proposed method demonstrates limited robustness against
Gaussian noise and median filtering compared to the two
variants. This is primarily because such perturbations degrade
edge and gradient information in the image, thereby impairing
the extraction of SURF feature points and the consistency of
feature region matching.

For the results presented in the Table IV, it is important to
emphasize that the Deep Hard EXIF variant serves solely as a
conceptual demonstration. The Deep Hard EXIF variant adopts
an end-to-end deep watermarking framework based on an
encoder—decoder architecture with an integrated noise layer. In
this framework, the original watermark input is replaced by a
64-bit CRP response, aligning in length with the configurations
used in MBRS [8], and CIN [9]. We conduct a comparative
evaluation of advanced watermarking techniques MBRS and
CIN on the COCO dataset. The noise pool includes Identity,
Cropout, Crop, Dropout, Resize, and JPEG compression. Here,
p denotes the intensity level of the applied noise.

The tabulated results demonstrate robustness comparable
to SOTA methods, along with strong adaptability of the
proposed framework. However, as noted in the Introduction,
deep learning models inherently require substantial training
and computational resources, posing significant challenges
for deployment at the sensor level. The objective of our
experiment is to illustrate the extensibility of the Hard EXIF
variant within such constraints.



TABLE V
TIME COST OF THE PROPOSED SENSOR PUF

Operation Hardware Module Latency
Row/Column addressing (select Cr, and CV,,) Row/Column Decoders < 0.2 ps
Pixel activation and reset voltage reading (Pc,, . PC{H) Sample-and-Hold (S/H) Circuit < 0.5 ps
Voltage comparison: |Pc,,, — PC;,J vs P Analog Comparator < 0.2 pus
Response bit output Logic gates (XOR + Threshold unit) < 0.1 ps

Retry if unstable (generate new CJ,,)

LFSR + Addressing Logic

< 0.3 ps (if triggered)

D. Cost

From a cost perspective, EXIF metadata management is
relatively economical, as it primarily involves modifying or
appending data to an image file without requiring addi-
tional hardware or complex algorithms. In contrast, digital
watermarking incurs costs associated with specialized soft-
ware for watermark embedding and detection, along with
the overhead of preserving watermark integrity. Copyright
registration services, particularly those offering formal legal
protection, are notably expensive. Copyright hash chains, es-
pecially blockchain-based implementations, entail significant
upfront costs due to the need to develop and maintain the
necessary technical infrastructure. However, their long-term
return on investment can be substantial, given the security and
immutability they provide.

Our framework capitalizes on the advantages of these exist-
ing technologies. EXIF metadata and CMOS-based solutions
can be implemented cost-effectively, leveraging existing hard-
ware, while PUF designs can be integrated at the circuit level
without the need for additional components. Therefore, the
proposed PUF can be easily implemented without affecting
or impairing the original function and performance of CMOS
image sensors. Device authentication does not require addi-
tional expensive security EEPROM/RAM, dedicated encryp-
tion modules, or other auxiliary PUF modules. As referenced
in [15] [60], the area overhead of a CMOS image sensor-based
PUF mainly stems from the inclusion of switch transistors and
the CRP generator. A single switch transistor is added per
column to bypass the column-level CDS circuitry. The total
number of required LUTs and registers [15] are 196 and 27,
respectively.

Based on the timing characteristics of each operation, the
total latency for generating a single CRP is approximately
1-1.2 us in Table V. Consequently, a complete 256-bit PUF re-
sponse—sufficient for robust device-level authentication—can
be generated in under 1 ms. This ultra-low latency makes
the proposed method well-suited for real-time or resource-
constrained environments.

The proposed method employs PCET moments for water-
mark embedding and extraction, requiring only 1.2 seconds
per image. The overall framework demonstrates high compu-
tational efficiency and simplicity across both hardware and
software layers.

E. Usability

For usability, compared to copyright chain and copyright
registration methods, our framework does not have a high

threshold for use because metadata and PUF are bound in
the hardware stage, and the watermark part is also easy to use
due to the blind watermark strategy. At the hardware level,
these internal software functionalities can be implemented by
hardware manufacturers, eliminating the need for end-users to
acquire additional knowledge or skills. Moreover, PUF has
been designed as a circuit that can be repeatedly verified
during the design process [60], and there are no verification
difficulties compared to complex watermark technologies. So
Hard EXIF has better usability.

V. CONCLUSION AND FURTHER WORKS

This paper explores the advantages and disadvantages of
current authorship protection technologies and analyzes four
important attributes: legal effectiveness, tamper resistance,
cost, and availability. We find that existing technologies can
not balance these characteristics well. In view of this, we
propose Hard EXIF, a new authorship protection framework
that utilizes metadata, hardware features, and image content
to achieve high legal effectiveness, strong resistance to tam-
pering, low usage costs, and good usability, providing a new
approach to authorship protection.

With the advent of the AIGC era, achieving identity con-
sistency and ownership traceability across different modalities
will emerge as a new challenge. Our proposed framework has
the potential to serve as a promising solution to this problem.
Therefore, as part of our future work, we will continue to
extend the framework and explore its applicability to broader
and more diverse scenarios.
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