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Abstract

Privacy and regulation are a long-lasting conflict in modern
instant messaging, where the security community attempts to
bridge this gap from a technological perspective. End-to-end
encryption (E2EE) is a mathematically guaranteed privacy
policy that has been widely built into commercial instant
messaging applications. On the other hand, regulatory designs
compatible with E2EE privacy are severely restricted, i.e.,
content auditing is (almost) impossible on ciphertext. For this
reason, the community develops perceptual hash matching
(PHM) as a regulation policy, where content-aware hash codes
for media are computed prior to E2EE and matched against
known criminal media, e.g., child pornography images, on
the server side.

In this paper, we systematically reveal a range of adversar-
ial threats to such E2EE-PHM systems, leading to regulatory
failures. Unlike previous case studies, our attack is a more re-
alistic threat – uniformly fooling the famous pHash, Facebook
PDQ, Microsoft PhotoDNA, and Apple NeuralHash, even with
higher success rates and less training rounds. Here, we vali-
date the above proposition in both scenarios of escaping and
triggering regulation.

Our main contribution is a new idea of multiresolution per-
turbation, where each perturbation element can affect image
regions of adjustable scales. With this new idea and its well-
formalized design, our attack encapsulates previous attacks
as special cases – in some scenarios, it exhibits a huge leap in
convergence efficiency compared to previous ones. Based on
the above technical insights, we also discuss possible counter-
measures and recommendations for social good.

1 Introduction

1.1 Privacy v.s. Regulation

With the popularity of modern instant messaging, concerns
about the potential compromise of personal privacy have be-
come increasingly prominent. In response to privacy con-

cerns, the end-to-end encryption (E2EE) has emerged as a
crucial safeguard in instant messaging applications [42].

Currently, more than 2 billion people around the world use
messaging platforms that support E2EE [50], such as What-
sApp1, Telegram2, and Messenger3. Here, E2EE ensures mes-
sages, photos, videos, and beyond are protected from unau-
thorized access – encrypting the data so that only the intended
recipients can access the content, preventing even the platform
from accessing it [42].

However, governments and agencies [34, 35] have ex-
pressed regulation concerns – E2EE will prevent the reg-
ulation of content that violates basic human rights, such as
child pornography, terrorism, drugs, and violent crime. Here,
the platform is unable to access plaintext or perform decryp-
tion, which limits the regulation ability to review and account
for criminal behavior.

In response to regulation concerns of E2EE privacy, many
platforms [2, 3, 33] have recently proposed deploying percep-
tual hash matching (PHM) to detect criminal content. With
such PHM regulation, each visual media file uploaded by the
user is first processed using a perceptual hash function to gen-
erate a fixed-length data fingerprint (hash code). The resulting
hash code is then matched against all known criminal media
files in the database of the platform.

Unlike traditional cryptographic hash of collision resis-
tance, PHM systems are designed to perform non-exact match-
ing – visually similar media files can be matched with also
similar hash codes, measured by distance functions. Once a
match occurs, the potentially criminal user is automatically
recorded, where the potentially criminal media may be re-
ported to an auditor (machine or real person) for further veri-
fication.

1https://faq.whatsapp.com/820124435853543.
2https://core.telegram.org/api/end-to-end.
3https://about.fb.com/news/2023/12/default-end-to-end-encryption-on-

messenger/

https://faq.whatsapp.com/820124435853543
https://core.telegram.org/api/end-to-end
https://about.fb.com/news/2023/12/default-end-to-end-encryption-on-messenger/
https://about.fb.com/news/2023/12/default-end-to-end-encryption-on-messenger/
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Figure 1: Illustration of the proposed ATKSCOPES for fa-
mous pHash, Facebook PDQ, Microsoft PhotoDNA, and Apple
NeuralHash algorithms. With our ATKSCOPES, the listed
attack images can all escape or trigger regulation, while main-
taining visual content of the original images.

1.2 State of the Art and Motivation
For realizing a good E2EE-PHM system, perceptual hashing
and its underlying visual feature representation are crucial.

In modern platforms of instant messaging, the widely
used perceptual hashing algorithms include pHash [23],
Facebook PDQ [11], Microsoft PhotoDNA [32], and Apple
NeuralHash [2]. Despite different designs, such algorithms
follow a unified workflow: important features reflecting visual
content are extracted and then processed (mainly quantized)
to form the compact code. Therefore, we can categorize them
from the perspective of multiscale feature analysis.

• pHash and PDQ extract global-scale features by two-
dimensional discrete cosine transform (DCT), with hash
codes of 64 and 256 bits, respectively.

• PhotoDNA extract mid-scale features by dividing the im-
age into a 6×6 grid and computing gradients within each
grid, with hash code of 144 bits.

• NeuralHash extract pixel-scale features by convolu-
tional neural network, with hash code of 96 bits.

Motivation. Although the above algorithms have been built
into worldwide platforms of instant messaging, their robust-

ness is not yet fully understood. Here, adversaries may exploit
the robustness weaknesses, thereby fooling E2EE-PHM sys-
tems and beyond. More recently, the security community has
explored the theoretical feasibility of adversarial attacks on
E2EE-PHM systems [17, 38]. Practically, such attacks cur-
rently still lack real-world threat – only applicable to indi-
vidual cases or too computationally expensive. For example,
Prokos [38] et al. take about 4 GPU hours to generate a suc-
cessful attack for PhotoDNA. We attribute such limitations to
the mismatch in the scale between the attack acting features
and the hash extracting features. Here, most existing attacks
add perturbations only in the pixel scale [8, 14, 31, 45], ig-
noring the multi-scale nature of global-scale pHash and PDQ,
mid-scale PhotoDNA, and pixel-scale NeuralHash.

1.3 Our contribution
Motivated by the above problem, we systematically reveal
the adversarial threat to E2EE-PHM systems, leading to reg-
ulatory failures. As shown in Figure 1, our attack is a more
realistic threat – uniformly fooling the famous pHash, Face-
book PDQ, Microsoft PhotoDNA, and Apple NeuralHash, even
with higher success rates and less training times. We also val-
idate the above proposition in both scenarios of escaping and
triggering regulation.

• At the technical level, we propose a new idea of mul-
tiresolution perturbation. With its formalized design,
each perturbation element can affect image regions of
adjustable scales – from the pixel scale to the global
scale, like the microscope to the telescope – hence the
name ATKSCOPES. Note that such flexible ATKSCOPES
encapsulate previous pixel-scale-only attacks as special
cases, thus enabling the unified attack across hash algo-
rithms. Moreover, our ATKSCOPES exhibit a huge leap in
efficiency, compared to previous ones with mismatched
scales between the attack acting features and the hash
extracting features.

• At the practical level, we achieve uniform, fast, and suc-
cessful adversarial attacks as realistic threats to 4 com-
mercial hashing algorithms of pHash, PDQ, PhotoDNA,
and NeuralHash in 2 scenarios of escaping and trigger-
ing regulation. Such practical results reveal the vulnera-
bility of worldwide E2EE-PHM platforms, with poten-
tially serious social implications. From our technical
insights, we also discuss possible countermeasures and
recommendations for social good.

2 Related Work

In this section, we will introduce the workflow of percep-
tual hashing algorithms, classify the proposed E2EE content
matching systems, and review relevant research on evaluating
the robustness of perceptual hashing algorithms.



2.1 Perceptual Hashing
A perceptual hashing algorithm generates a fixed-length data
fingerprint (hash code) for multimedia files (e.g., images).
Semantically similar images are mapped to similar hash codes.
We denote perceptual hashing as a function H : I → Ml .
For an input image X ∈ I, H (X) = h, where h ∈ Ml , and
Ml = {0,1}l or Ml = Rl . Here, {0,1}l represents a binary
string of length l, and Rl represents a string of real numbers
of length l. An input image X such that H (X) = h is called
a preimage of h. Define X ′ as a slightly modified version of
X , where X ′ and X are visually similar. Also, define Y as an
image that is visually different from X . Perceptual hashing
should satisfy the following conditions:

• Generate similar hash codes for perceptually similar im-
ages. P(H (X) = H (X ′))≈ 1.

• Generate significantly different hash codes for perceptu-
ally dissimilar images. P(H (X) = H (Y ))≈ 0.

The similarity between two images X and Y is quantified
by measuring the distance between their hashes. Here, we
define this distance as D. For binary hashes, D is calculated
using the Hamming distance. For real-number hashes, the
distance is calculated using the Euclidean distance.

The process of generating a hash code typically involves
three steps. First, the input image X is preprocessed, such as
through scaling and grayscaling, to obtain the preprocessed
image X p. Next, the preprocessed image X p undergoes feature
extraction to obtain a feature vector F . Finally, the feature
vector F is mapped to a hash code h.

Different hashing algorithms vary in how they extract
features. Some algorithms extract local features, such as
NeuralHash which extracts features in the pixel domain.
Some algorithms extract global features, such as pHash which
converts the image to the frequency domain and then extracts
frequency domain features.

2.2 Regulation Under E2EE Privacy
Sensitive images detection via client-side. A client-side
matching system based on perceptual hashing for detecting
sensitive images includes a database D= {X1, . . . ,XN} con-
taining N sensitive images stored on the client side, where
each image Xi ∈ I(1≤ i≤ N), a perceptual hashing algorithm
H , a distance measure D for assessing similarity between
hash codes of two images, and a threshold ∆d > 0 for deter-
mining if two images are similar. For an image X uploaded by
the user, the system first computes its hash code H (X) using a
perceptual hashing algorithm, and then calculates the distance
between this hash code and the hash codes of N images in the
database using a function D . If there exists Xi ∈ I(1≤ i≤ N)
such that D(H (Xi),H (X))< ∆d , the image is flagged as il-
licit and further actions are taken. A drawback of this method
is deploying the sensitive image database on the client-side,

which can be susceptible to reverse engineering. Currently,
only Xiaomi [43] employs this method for keyword-based
scanning.

Matching with a server-held list of sensitive images. This
method stores the sensitive image database D on the server.
Techniques such as Microsoft’s EdgeHash [33] method are ex-
amples of this approach. The same as the client-side scanning
method, this method also uses perceptual hashing algorithm
on the client to calculate the hash code of the user content.
Assume there is a service provider S that offers an API for
client C to use. The client C uses this API to compute the
digests EdgeHash(X) of the user-uploaded image X . Then,
client C transmits the digests EdgeHash(X) to the central-
ized provider S for further processing and comparison. The
comparison method is similar to that of client-side matching.
The key point here is that client C does not need to store the
digests of sensitive content locally but directly transmits the
computed digests to provider S, who handles subsequent sen-
sitive content matching and processing. The drawback of this
method is that it requires transmitting the digests of all client
content to the service provider. If an attacker gains access to
the client’s digests and manages to recover images from the
digests, it could result in a privacy breach for users.

Cryptographic matching. To address the shortcomings
of the aforementioned methods, recent work [5, 12, 26, 44]
has designed privacy-preserving cryptographic protocols for
hash matching. In these systems, the content of both the user
and the sensitive database is protected from leakage. First, the
user content digest H (X) is computed at the endpoint, and
then compared with the provider’s sensitive image content
database digests through a two-party computation (2PC) pro-
tocol. The comparison process can be based on homomorphic
encryption [44] or private set intersection (PSI) [5] protocols.

2.3 Robustness of Perceptual Hashing

Previous research has shown that perceptual hashing algo-
rithms are robust against common image transformations
such as resizing, recoloring, watermarking, cropping, and blur-
ring [1, 10, 55]. These studies explored the performance of
perceptual hashing in duplicate image detection. However,
they did not further consider the impact of adversarial attacks
on the robustness of perceptual hashing.

A recent study [8] investigate achieving hash collisions
through adversarial attacks. Perceptual hashing algorithms
are also widely used for similar image search and matching
on the internet, and many researchers have evaluated their
robustness in image retrieval [4, 14, 15, 27, 28, 47, 48, 53, 54].

During our investigation, several concurrent projects [17,
38, 45] also examine the security of perceptual hashing func-
tions in the context of E2EE. In 2021, Apple release a
new system called NeuralHash [2], which focuses on iden-
tifying Child Sexual Abuse Material (CSAM) content up-
loaded by users to Apple’s iCloud service. Subsequently,



researchers [45] conduct a comprehensive analysis of the
NeuralHash-based deep perceptual hashing content match-
ing system, demonstrating that attackers could fine-tune im-
ages by applying gradient-based methods or simple image
transformations to change the image’s hash code, forcing hash
collisions or evading detection. Although this is related to the
attack scenarios discussed in this paper, NeuralHash, as a
deep perceptual hashing algorithm, is inherently susceptible
to adversarial attacks. However, the non-learning perceptual
hashing algorithms evaluated in this paper ( e.g., PhotoDNA,
PDQ, and pHash) require a more complex optimization frame-
work.

Jain et al. [17] evaluate the robustness of client-side match-
ing systems based on perceptual hashing against detection
avoidance attacks. They evaluate shallow hashing algorithms
such as pHash, aHash, dHash, and PDQ but lack an evaluation
of deep hashing and only consider a single attack scenario
focused on detection avoidance.

Prokos et al. [38] refine the work of [17] by considering
two attack scenarios, including escaping regulation attacks
and triggering regulation attack. They develop a threat model
for perceptual hashing algorithms and evaluate the two most
widely deployed non-learning perceptual hashing algorithms:
PhotoDNA and PDQ. However, their optimization process only
considered adding perturbations in the image’s pixel domain,
ignoring the different resolutions that the hashing algorithms
might involve when extracting features, leading to prolonged
attack times. An attack on PhotoDNA takes about 4 hours to
complete 20,000 training rounds for a single triggering regu-
lation attack. In real-world attack scenarios, this undoubtedly
requires significant time and computational resources.

3 Attack Modeling

We here propose two threat models against E2EE-PHM sys-
tems, referred to as the escaping regulation attack and the
triggering regulation attack.

3.1 Escaping Regulation Attack
We assume that the attacker has access to an image from the
sensitive content database D, denoted as the original image
X ∈ D.

The attacker’s objective is to circumvent the sensitive im-
age database D and distribute this image across the network
within the framework of the E2EE-PHM systems. In details,
the attacker seeks to create an attack image X ′ that fulfills two
conditions:

• The original image X and the attack image X ′ remain
visually similar.

• The attack image X ′ escapes regulation, meaning
D(H (X ′),hX )> ∆d , where hX represents the hash code

of the original image and ∆d denotes the matching thresh-
old of the E2EE-PHM system.

Here, we assume the attacker knows ∆d . We will discuss
the validity of this assumption in Section 5.2.

Formulation 1. (Escaping Regulation Attack: Optimiza-
tion Objective). With the above two conditions, the objective
of the escaping regulation attack can be formalized as fol-
lows:

Minimize: V (X ,X ′)+ c ·L(X ′,hX )

s.t.: D(H (X ′),hX )> ∆d

X ′ ∈ I
, (1)

where V denotes the measure of visual similarity between
two images, with a lower value indicating higher visual
similarity. The function L represents a differentiable loss
function that allows the optimization process to gradually
increase the distance between the hash codes of images X
and X ′ until it satisfies D(H (X ′),hX )> ∆d . The parameter
c is a adjustable weight factor employed to balance the two
loss terms. The function D quantifies the distance between
the hash codes of images X and X ′:

D =

{
DB if the hash code is binary
DR otherwise

,

where when the hash codes are binary, the Hamming dis-
tance, denoted as DB, is used to quantify the number of
differing bits between the hash codes. Otherwise, the L1
distance, denoted as DR, is used to calculate the distance
between the hash codes.

The attacker’s goal is to minimize the function L while
preserving the content of the image as much as possible. The
first constraint requires that the distance between the hash
codes of the original image X and the attack image X ′ must
exceed the threshold ∆d , thereby preventing the E2EE-PHM
systems from matching the attack image to the original. The
second constraint mandates that the attack image X ′ must be
valid, with pixel values within the allowable range.

If the attacker can achieve the above objective at a practi-
cally feasible cost, they can effectively distribute any sensitive
image without being detected.

3.2 Triggering Regulation Attack
In this threat model, the attacker aims to create a pair of
semantically unrelated images that collide in the hash space.

Specifically, the attacker adds perturbations to an innocuous
image X to generate an attack image X ′, such that the hash
code of X ′ matches the hash code ht of a target sensitive image
in the database. X and X ′ should appear visually similar.

In practice, the attacker might send X ′ via a communication
medium that does not reveal the recipient’s identity (e.g.,



bulletin boards or anonymous messaging systems), and the
recipient might forward X ′ through the same medium. Any
user forwarding X ′ through E2EE-PHM systems would be
falsely detected as transmitting sensitive content. Given the
distribution across many devices, this could lead to a large
number of false alarms in E2EE-PHM systems, resulting in
the entrapment of innocent users or a Distributed Denial of
Service (DDoS) attack.

Another concerning scenario is that governments or other
powerful organizations might exploit this method to manipu-
late images for censorship purposes. For instance, they could
manipulate images critical of the government to collide with
hash codes in the sensitive database and then disseminate
these manipulated images via social media. Ultimately, these
images may appear on the devices of supporters of such
rhetoric, at which point the E2EE-PHM systems would trigger
a match, thus facilitating the identification, monitoring, and
persecution of these individuals.

We assume that the attacker knows the hash code ht of a
target image in the sensitive database. There is no need to
know the original image corresponding to the hash code ht .
For a benign input image X , the attacker aims to generate an
attack image X ′ that meets the following two conditions:

• The original image X and the attack image X ′ remain
visually similar.

• The attack image X ′ triggers regulation, meaning
D(H (X ′),ht)< ∆d , where ∆d represents the matching
threshold of the detection system.

Here, we assume the attacker knows ∆d .

Formulation 2. (Triggering Regulation Attack: Optimiza-
tion Objective). With the above two conditions, the objective
of the triggering regulation attack can be formalized as
follows:

Minimize:
δ

V
(
X ′,X

)
+ c ·L(X ′,ht)

s.t.:D(H (X ′),ht)< ∆d

X ′ ∈ I

, (2)

where V and D are consistent with the definitions provided
in Formulation 1. The function L represents a differentiable
function that enables the hash code of the attack image
X ′ generated during the optimization process to gradually
approach the hash code of the target image ht until it satisfies
D(H (X ′),ht) < ∆d . The parameter c serves as a tunable
weight factor to balance the two loss terms.

The attacker’s goal is to minimize the function L while
ensuring that the adversarial image X ′ retains the visual con-
tent of the original image X as much as possible. The first
constraint ensures that the distance between the hash code of
the attack image X ′ and the target hash code ht is less than
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Figure 2: Illustration of local orthogonal transformation,
where D represents the image domain and Duvw represents
the domain of the basis function, converting the two domains
with the translation offset (u,v) and the scaling factor w.

··· ···

Figure 3: Illustration of multiresolution perturbation.

the detection system’s matching threshold ∆d . This allows the
attack image X ′ to be mistakenly recognized by the detection
system as the target image. The second constraint requires
that the attack image X ′ must remain within the valid pixel
range.

4 Attack Methodology

In this section, we discuss the methodology of ATKSCOPES
for performing attacks against pHash, PhotoDNA, PDQ, and
NeuralHash.

4.1 Escaping Regulation Attack

We define a valid image I = [0,1]n, where the image size n
equals the number of pixels in the image. Given an input
image X and a perceptual hash function H , the goal is to
find the minimal perturbation such that the attack image X ′

of the original image X is not matched to X during content
matching. This corresponds to finding an X ′ semantically
equivalent to X , where D(H (X ′),hX ) > ∆d . Here, D repre-
sents the distance between the hash codes of the two images
and hX represents the hash code of X . When the hash distance



between the two images exceeds the detection threshold of
E2EE-PHM, it will not trigger a hash match under the given
threshold. Our optimization objective is consistent with that
described in Formulation 1.

4.1.1 Multiresolution Perturbation

Unlike previous studies that directly add perturbations to
the pixel domain of the image (e.g., X + δ), we introduce
multiresolution perturbation. Here, each perturbation element
can affect image regions of adjustable scales, for a good match
in scales between the attack acting features and the hash
extracting features, thereby significantly changing the hash
codes.

Definition 1. (Multiresolution perturbation). The addition
of multiresolution perturbation is defined as follows:

X ′(x,y)∈Duvw
= F −1 (F (X)+δ) , (3)

with notations of

F (X) = ⟨X ,V uvw
nm ⟩=

∫∫
D
(V uvw

nm (x,y))∗X(x,y)dxdy, (4)

and
F −1(F (X)) = ∑

n,m
V uvw

nm (x,y)F (X), (5)

where F denotes the local orthogonal transformation [39],
with image X(x,y) on domain (x,y) ∈ D. The local orthogo-
nal basis function V uvw

nm is defined on the domain Duvw with
the order parameters (n,m) ∈ Z2, converting D to Duvw by
the translation offset (u,v) and the scaling factor w, as il-
lustrated in Figure 2. Note that the local orthogonal basis
function V uvw

nm can be defined from any global orthogonal
basis function Vnm, e.g., a family of harmonic functions, with
following form:

V uvw
nm (x,y) =Vnm(x′,y′) =Vnm(

x−u
w

,
y− v

w
). (6)

Remark. Multiresolution perturbations are in fact a very
general formalization, covering previous pixel-scale-only at-
tacks as special cases. As shown in Figure 3, such flexible
ATKSCOPES allow for a unified attack across hash algorithms,
from global-scale pHash and PDQ, to mid-scale PhotoDNA,
and to pixel-scale NeuralHash. Next, we will further explain
such typical examples derived from Definition 1.

We define the offsets u ∈ U and v ∈ V, the scaling factor
w ∈W. The combined set of all possible parameters is de-
noted as Ω = U×V×W. Technically, we first transform the
image X to obtain its coefficient matrix F (X). Then, we add
perturbation δ into the coefficient matrix F (X). For the per-
turbed image X ′, we perform an inverse transformation F −1

on the perturbed matrix and sum the inverse results over all
(u,v,w) ∈Ω.

Example 1. (Global-scale perturbations). For global-scale
perturbations, the offsets are defined as U = 0 and V = 0
with scaling factor of W= 1

Global-scale perturbations are good matches for the per-
ceptual hash algorithms that rely on the global features of the
image, such as pHash and PDQ.

Example 2. (Pixel-scale perturbations). For pixel-scale per-
turbations, the offsets are defined as U = {−n+ 1,−n+
3, . . . ,n−1}/2 and V= {−n+1,−n+3, . . . ,n−1}/2 with
the scaling factor of W = 2/n, where n is the scale of the
image.

Pixel-scale perturbations are good matches for the percep-
tual hash algorithms that rely on the pixel features of the
image, such as NeuralHash. Here, traditional pixel-domain
perturbations [14, 17, 29, 38] are special cases of multiresolu-
tion perturbations.

Example 3. (Mid-scale perturbations). For mid-scale per-
turbations, the offsets are defined as U = {−n+ 2k,−n+
6k, . . . ,n − 2k}/2 and V = {−n + 2k,−n + 6k, . . . ,n −
2k}/2, with the scaling factor of W = 2k/n, where k is a
factor of n.

Mid-scale perturbations are good matches for the percep-
tual hash algorithms that rely on the patch features of the
image, such as PhotoDNA.

4.1.2 Visual Distance V

The visual distance V is used to measure the visual similarity
between two images. In this paper, we consider two visual
metrics, including L2 distance and Learned Perceptual Image
Patch Similarity distance (LPIPS) [57].

L2 distance, also known as Euclidean distance, is a direct
measurement method that calculates the square root of the
sum of the squared differences between the corresponding
pixel values of two images. This metric is computationally
efficient and widely used in various image processing tasks.

LPIPS distance is a learned metric method that compares
images based on features extracted by deep neural networks.
LPIPS aims to better align with human perceptual judgment
by capturing subtle differences in texture, color, and structure.

In our attacks on four perceptual hashing algorithms, we
use these two visual metrics as loss terms to evaluate the im-
pact of different visual distances on the optimization process.



4.1.3 Hash Similarity Loss L

Recall that L needs to be differentiable and reflects the sim-
ilarity of the hash codes of two images. We optimize L to
increase the distance between semantically similar images in
the hash space, thereby escaping regulation.

Definition 2. (L for pHash , PDQ , and PhotoDNA). To
change the hash code of the input image X such that the hash
distance between hX and H (X ′) exceeds a given threshold
∆d , a hinge loss function is defined as follows:

L(X ′,hX ) = max
{

tanh
(

1− D(H (X ′),hX )

∆d

)
,0
}
, (7)

where L converts the distance between the two hash strings
into a probability. ∆d is a tunable parameter that represents
the desired distance in the hash space between the attack
image and the original image.

Remark. For instance, for a 256-bit hash output from PDQ,
if an attacker aims to create an attack image X ′ with an 80-bit
difference in the hash space from the original image X , ∆d
should be set to 80. We use tanh() for L because it makes
the loss function steeper as the hash distance approaches the
target distance, thereby facilitating the convergence of the
optimization process.

Definition 3. (L for NeuralHash). For NeuralHash,
gradient-based white-box optimization is employed to in-
crease the hash difference between the original image X
and the attack image X ′. The differentiable L is defined as
follows:

L(X ′,hX ) =−L1(S(p), hX ), (8)

where p = M (X ′) represents the floating-point hash out-
put vector of length 96 before binarization. M signifies
the feature extraction and transformation process in the
NeuralHash model. Specifically, M maps the input image
X ′ to a floating-point vector p of length 96. In NeuralHash,
the Heaviside step function is used to binarize p into a binary
vector. To make the loss function differentiable, the binariza-
tion step is replaced with a Sigmoid function S(p) = 1

1+e−p ,
thereby allowing gradients to flow through the network dur-
ing optimization. Instead of L1, −L1 is increasing the Ham-
ming distance between two hashes.

4.1.4 Optimization Process

Gradient-based optimization. Algorithm 1 describes our
optimization process. The original image X is used as the
starting image for the attack. Our goal is to find an attack im-
age X ′ such that D(H (X ′),hX )> ∆d . We generate the attack
image X ′ by adding perturbations to the original image X ,
where the magnitude of the perturbations is determined by

Algorithm 1 Escaping regulation attack

1: Inputs: N: num training rounds, X : original image to
be attacked, hX : hash code of original image, f (): loss
function, ∆d: E2EE-PHM systems matching threshold,
(u,v): translation offset, w: scale factor, γ: learning rate.

2: Output: X ′: attack image
3: for i = 1,2, . . . ,N do
4: δi = calcDelta(δi−1, f ,γ)
5: Xi← ∑u,v,w∈Ω F −1 (F (Xi−1)+δi,uvw)
6: HashDistance = D(H (Xi),hX )
7: if HashDistance > ∆d then
8: successfully generated attack image
9: end if

10: end for

Algorithm 2 calcDelta

1: Inputs: f (): loss function, γ: learning rate, δi: pertur-
bation, M ∈ Rq, υ ∈ Rq, T ∈ Zq: ADAM states, where
q is the size of the perturbation, β1 = 0.9, β2 = 0.999,
ε = 10−8: ADAM hyper-parameters, a: a small constant,
ei: a standard basis vector with only the i-th component
as 1.

2: Output: δi+1
3: randomly pick a coordinate i ∈ {1, · · · ,q}
4: if attack mode = black-box then
5: ĝi := ∂ f (δ)

∂δi
≈ f (δ+aei)− f (δ−aei)

2a
6: else
7: ĝi := ∂ f (δ)

∂δi
using gradient propagation

8: end if
9: Ti← Ti +1

10: Mi← β1Mi +(1−β1)ĝi
11: vi← β2vi +(1−β2)ĝ2

i
12: M̂i = Mi/(1−β

Ti
1 )

13: v̂i = vi/(1−β
Ti
2 )

14: δi+1 =−γ
M̂i√
v̂i+ε

Algorithm 2. Initially, we perform an image domain transfor-
mation of the image X in the local coordinate system (u,v)
with a scaling factor w, obtaining its coefficient matrix rep-
resentation F (X) in the transformed domain. The pertur-
bation is then applied to the transformed image domain as
F (Xi−1)+δi,uvw. Subsequently, we obtain the updated local
image through an inverse image transformation. Finally, by
stitching together the inverse-transformed local images for
all (u,v,w) ∈Ω, we reconstruct the complete image X ′ with
added perturbations. This process is repeated until the hash
distance between the updated image and the original image
satisfies D(H (Xi),hX )> ∆d .

Perturbation update. Algorithm 2 details the perturbation
update. In each training round, a coordinate of the pertur-



bation variable is randomly selected, and it is updated by
approximately minimizing the objective function along that
coordinate. For black-box attacks on non-learning perceptual
hashing algorithm, we estimate the gradient using the symmet-
ric difference quotient. In detail, we estimate the gradient by
adding and subtracting a small constant a to the perturbation δ,
and then computing the difference in the loss function values.
For white-box attacks on NeuralHash, we use backpropa-
gation to estimate the gradient. After obtaining the gradient
values, we update the selected coordinate using ADAM, and
compute and return the updated perturbation δi+1.

4.2 Triggering Regulation Attack
Given an input original image X and the hash code ht of a tar-
get image in an sensitive image database, we do not even need
to know the source image corresponding to ht . Our goal is to
find a minimal perturbation δ such that X ′ remains semanti-
cally similar to the original image X , but D(H (X ′),ht)< ∆d .
This would cause the distance between two semantically dif-
ferent images in the hash space to be below the detection
threshold of the E2EE-PHM system, leading to numerous
false alarms within the system. Our optimization objective is
as described in Formulation 2.

4.2.1 Visual Distance V

In this attack scenario, we also consider two visual similarity
measures, including L2 distance and LPIPS. We use these met-
rics as separate loss functions V and test their performance
in attacks against four different perceptual hash algorithms.
Detailed results will be presented in the experiments section
5.3.2.

4.2.2 Hash Similarity Loss L

The loss function L needs to be differentiable and reflect
the similarity between the hash codes of two images. This
ensures that, when minimizing the value of the loss function
L , semantically different images can collide in the hash space.

Definition 4. (L for pHash , PDQ , and PhotoDNA). A
hinge loss function L for pHash, PDQ and PhotoDNA is
defined as follows:

L(X ′,ht) = max{D(H (X ′),ht),0}, (9)

Definition 5. (L for NeuralHash). A hinge loss function
L for NeuralHash is defined as follows:

L(X ′,ht) = max{0,−p ·ψ(ht)}, (10)

where p = M (X ′) is the floating-point hash output before
binarization. M maps the input image X ′ to a floating-point

Algorithm 3 Triggering regulation attack

1: Inputs: N: num training rounds, X : original image to be
attacked, ht : hash code of target image, f (): loss func-
tion, ∆d: E2EE-PHM systems matching threshold, (u,v):
translation offset, w: scale factor, γ: learning rate.

2: Output: X ′: attack image
3: for i = 1,2, . . . ,N do
4: δi = calcDelta(δi−1, f ,γ)
5: Xi← ∑u,v,w∈Ω F −1 (F (Xi−1)+δi,uvw)
6: HashDistance = D(H (Xi),ht)
7: if HashDistance < ∆d then
8: successfully generated attack image
9: end if

10: end for

vector p of length 96. The operation ψ(ht) = sign(ht −0.5)
transforms each 0-bit in the hash vector with −1. The hash
code H (X ′) equals ht if and only if the signs of p and ψ(ht)
match at every bit of the hash code.

4.2.3 Optimization Process

Algorithm 3 describes the process of Triggering Regulation
Attack. The original image X is input as the starting image for
optimization, and the hash code ht is input as the target hash
code. Our goal is to find an adversarial image X ′ that satisfies
D(H (X ′),ht)< ∆d . The function calcDelta is used to com-
pute the perturbation δi, which employs a loss function f and
a learning rate γ to determine the direction and magnitude of
the perturbation. The process of adding perturbation to the
image is identical to Escaping Regulation Attack. During the
iterative process, D(H (Xi),ht) is continuously checked to
see if it is less than the threshold ∆d . If the distance is below
this threshold ∆d , the attack is considered successful, and the
algorithm terminates early.

5 Evaluation

5.1 Experimental Setup
Perceptual hashing algorithms. We select an open-source
implementation [7] of pHash, which has been utilized in many
prior studies [14, 21, 22, 37, 40]. We set pHash with there rec-
ommended parameters. For the implementation of PDQ, we use
the official source code released by Facebook [11]. PhotoDNA
is proposed by Microsoft, but Microsoft has not provided any
open implementation of PhotoDNA to date. However, a pre-
sumed implementation [19, 20] of PhotoDNA was leaked on
GitHub in 2021 , and we use it for our attacks. Its behavior
is similar to the high-level description of PhotoDNA provided
by one of its algorithm authors [12]. For NeuralHash, we ex-
tract the NeuralHash model from recent versions of macOS
or iOS.
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Figure 4: Frequency distribution of paired hash distances derived from 12246 perceptually different image pairs in the CopyDays
dataset. These distributions are used to determine the threshold for image detection. From left to right, the graphs represent the
frequency distributions for pHash, PDQ, PhotoDNA and NeuralHash.
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Figure 5: FNR for attack images using pHash, PDQ, PhotoDNA, and NeuralHash with different scales of database D.

Datasets. For our evaluation, we use two different image
databases, which will be used for different purposes. We eval-
uate our two attack scenarios using the ImageNet dataset from
the ILSVRC 2012 challenge [41]. The ImageNet dataset is
characterized by its large scale and diversity. We assume
that every pair of images in the ImageNet dataset is visu-
ally distinct. We randomly select 50 pairs of images from
the ImageNet dataset for the triggering regulation attack. For
the escaping regulation attack , we also randomly select 50
images from the ImageNet dataset as the start images.

We use the CopyDays dataset [16] to calculate the detection
thresholds for each perceptual hashing algorithm because the
hash distances between image pairs are relatively similar and
stable across different datasets [17], allowing attackers to
reasonably estimate the detection thresholds.
Hardware Specifications. All experiments in this section
were compiled and executed using PyTorch 1.9 and Python
3.6 on two separate machines. PhotoDNA attacks were con-
ducted on a 6-Core 3.0-GHz CPU (Intel Core i5-12490F).
PDQ and pHash attacks were executed on a 12-Core 3.6-
GHz CPU (Intel Core i7-12700K), while NeuralHash attacks
were performed on a 14592-Core 2.3-GHz GPU (Nvidia RTX
4090).

5.2 Baseline Experiments

Determining match thresholds. Before running the attacks,
we need to determine the appropriate distance threshold ∆d
for image matching with different perceptual hashing algo-
rithms. The threshold ∆d set in E2EE-PHM systems has a
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Figure 6: Example images for escaping regulation attack
against pHash, PDQ, PhotoDNA and NeuralHash.

complex impact on the matching results. A higher threshold
will make the system more sensitive to attack images gen-
erated by escaping regulation attack but will also result in a
higher rate of natural false positives. A lower threshold will
make triggering regulation attack more difficult to achieve but
will increase the success rate of escaping regulation attack.

We calculate the hash distances between each pair of im-
ages in the CopyDays dataset, which consists of 157 percep-
tually distinct images, resulting in a total of (157×156)/2 =
12246 image pairs. The hash distance frequency distribution



Success Rate L2 Distance ↓ Hash Distance Rounds k

100% 104.29 3851.02 479.12 n/2
100% 77.52 3850.92 551.60 n/4
100% 92.84 3851.01 756.01 n/8

Table 1: Comparison of the effects of different k values in the triggering regulation attack on PhotoDNA. Where k = n/4 and
k = n/8 indicate that the domain of the basis function is divided into 4 equal parts and 16 equal parts of the image, respectively.
When k = n/2, it means that the domain of the basis function is the same as the domain of the image. Here, we use the cosine
function as the basis function, corresponding to the discrete cosine transform.

H V Success Rate L2 Distance ↓ LPIPS Distance ↓ Hash Distance ∆d Rounds

pHash L2 100% 66.43 0.22 13.00 12 122.36
pHash LPIPS 100% 79.51 0.24 13.00 12 118.52
PDQ L2 100% 73.03 0.49 92.52 92 79.36
PDQ LPIPS 100% 96.84 0.45 92.64 92 69.86

PhotoDNA L2 100% 46.82 0.23 3866.04 3855 137.64
PhotoDNA LPIPS 100% 59.88 0.21 3858.00 3855 132.22
NeuralHash L2 100% 30.62 0.19 18.32 17 18.66
NeuralHash LPIPS 100% 30.78 0.19 18.36 17 18.84

Table 2: Escaping regulation attack against pHash, PDQ, PhotoDNA and NeuralHash with different perceptual distance functions
V .

results for 12246 image pairs are shown in Figure 4. From the
figure, we find that the appropriate image matching thresholds
∆d for pHash, PDQ, PhotoDNA, and NeuralHash are 12, 92,
3855, and 17, respectively.

Attack parameters. For different perceptual hashing algo-
rithms, we apply perturbations at various scales using Defi-
nition 1. For PDQ and pHash, we apply global-scale perturba-
tions of Example 1. For NeuralHash, we apply local-scale
perturbations of Example 2. For PhotoDNA, we apply mid-
scale perturbations of Example 3. To determine the appropri-
ate value of k for attacking PhotoDNA, we conducted a series
of controlled experiments. These controlled experiments were
performed under the triggering regulation attack scenario, us-
ing the L2 distance to measure visual distortion, with the
matching threshold ∆d set to 3855. Table 1 reports the results
of different k values in the triggering regulation attack on
PhotoDNA, where k = n/4 results in the smallest visual loss
for the attack images. When there is not much difference in
the number of training rounds, we choose parameter settings
that can minimize visual loss. In the following experiments,
we will use the above parameter settings to attack PhotoDNA.

5.3 Attack Results

We conduct empirical evaluations of the following two at-
tacks using the ImageNet dataset from the ILSVRC 2012
challenge [41].

5.3.1 Escaping Regulation Attack

In our first attack scenario, we investigate the feasibility of
generating images that can escape regulation by the E2EE-
PHM system. Specifically, we explore whether perturbations
applied to images could change their hash codes enough to
bypass the E2EE-PHM system’s detection of sensitive mate-
rial. We randomly selecte 50 visually distinct images from the
ImageNet dataset as the starting image for our attacks. Based
on the baseline experiments described in Section 5.2, we set
the matching thresholds ∆d for pHash, PDQ, PhotoDNA, and
NeuralHash to 12, 92, 3855, and 17, respectively.
Impact of perceptual distance function V . We evaluate
the impact of using L2 and LPIPS as the visual metric V ,
respectively, on the effectiveness of the attack in the escaping
regulation attack against four perceptual hashing algorithms.
Table 2 presents the final hash distances between the attack
images and the original images. Additionally, we report the
perceptual differences between the attack images and the
original images, measured using L2 distance (denoted as" L2
distance") and LPIPS (denoted as "LPIPS distance").

Firstly, table 2 shows that using both L2 and LPIPS as
loss functions V achieves the intended attack effect. Both
methods are able to make D(H (X ′),hX )> ∆d . Secondly, by
comparing L2 and LPIPS, we observe that using L2 as the
loss function results in a smaller L2 distance between the
generated attack image and the original image at each pixel
but requires slightly more training rounds to complete the
attack. In contrast, using LPIPS as V creates attack images



H V Success Rate L2 Distance ↓ LPIPS Distance ↓ Hash Distance ∆d Rounds

pHash L2 100% 78.83 0.30 10.61 12 238.94
pHash LPIPS 100% 85.45 0.29 10.80 12 220.34
PDQ L2 100% 76.60 0.46 90.80 92 64.60
PDQ LPIPS 100% 84.16 0.42 90.80 92 58.60

PhotoDNA L2 100% 77.52 0.43 3850.92 3855 551.02
PhotoDNA LPIPS 100% 102.59 0.48 3851.28 3855 496.21
NeuralHash L2 98% 48.60 0.33 13.30 17 762.04
NeuralHash LPIPS 92% 49.79 0.27 13.13 17 409.45

Table 3: Triggering regulation attack against pHash, PDQ, PhotoDNA and NeuralHash with different perceptual distance functions
V .

with lower perceptual changes (LPIPS distance is generally
smaller when LPIPS is used as V compared to L2) and can
complete the attack with less training rounds

Results. In our experiments, we successfully execute attacks
on 50 randomly selected ImageNet sample images, achieving
a 100% attack success rate. Figure 16 illustrates examples
of images attacked successfully using our attack, with the
hash distances between the attack images and original im-
ages all exceeding the predefined threshold ∆d . The attack
images consistently retained the visual content of the original
images. Table 2 presents the visual differences between the
attack images and the original images, measured using L2 and
LPIPS, with PDQ requiring the most significant visual modifi-
cations. Figure 6 also shows the attack images generated using
LPIPS and L2 as visual loss constraints, respectively. Addi-
tionally, Table 2 indicates that our proposed method achieves
the attack with very few training rounds. On average, we
exceed the threshold ∆d = 3855 for PhotoDNA within 138
training rounds For PDQ, we exceed ∆d = 92 in just 80 train-
ing rounds. Similarly, for pHash and NeuralHash, only 123
and 19 training rounds are needed to exceed their evasion
detection thresholds of ∆d = 12 and ∆d = 17, respectively.

Real-world attack scenario replication. In the aforemen-
tioned attack, we define an attack as successful when the
distance between the perturbed image X ′ and the original
image X exceeds the threshold ∆d. However, a scenario may
arise where the distance between the perturbed image X ′ and
the original image X is greater than ∆d, but the distance be-
tween X ′ and another image in the sensitive content database
D is less than or equal to ∆d. Consequently, the image is
correctly flagged as sensitive content, although for the wrong
reason. To evaluate the impact of this scenario on the eva-
sion effectiveness of our escaping regulation attacks against
E2EE-PHM systems, we design the following experiment.

First, we assume that the 50 attack images represent im-
ages with sensitive content in real-world scenarios. Next, we
construct the sensitive content database D by selecting M im-
ages from ImageNet, which includes the 50 original images
corresponding to the 50 attack images. For each perceptual
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Figure 7: Example images for triggering regulation attack
against pHash, PDQ, PhotoDNA and NeuralHash.

hashing algorithm, we set two detection thresholds, ensuring
that these thresholds do not exceed the values established in
the baseline experiment. If the thresholds used in practice
exceed those from the baseline experiment, it could result in
an excessive number of false positives, incorrectly labeling
benign images as sensitive content. This is because the hash
distance between two benign images might also be less than
or equal to the baseline threshold ∆d.

We then compute the hash distance between each attack
image and the images in the sensitive content database D. If
the distance is less than the given threshold ∆d, the image
is flagged as sensitive content. Finally, we calculate the pro-
portion of attack images incorrectly rejected by the detection
system, which represents the false negative rate (FNR).

As illustrated in Figure 5, for the perceptual hashing algo-
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Figure 8: The progress of triggering regulation attack using pHash, PDQ, PhotoDNA, and NeuralHash on 50 randomly selected
image pairs from the ImageNet dataset. The baseline ∆d is shown by the blue dashed line. The ∆dvalues for pHash, PDQ,
PhotoDNA, and NeuralHash are 12, 92, 3855, and 17, respectively.

rithms pHash, PDQ, PhotoDNA, and NeuralHash, with thresh-
olds set at 9, 85, 1800, and 14 respectively, the false negative
rate (FNR) for attack images is exceedingly high across all
algorithms. This indicates that very few attack images get
flagged for being at a hash distance < ∆d from another image
in the database. As the size of the database increases, the FNR
decreases as expected. With a larger dataset, there is a higher
likelihood of being flagged, even if the reason is incorrect.

5.3.2 Triggering Regulation Attack

In this attack scenario, given the hash code ht of a target image
Xt , we attempt to generate an image X ′ that collides with ht in
the hash space, such that D(H (X ′),ht)< ∆d . This is equiva-
lent to matching benign images with images in a database of
sensitive content in the E2EE-PHM system, leading to a high
number of false positives in the system.
Impact of Perceptual Distance Function V . Table 3 shows
that for non-learning-based perceptual hashing algorithms
such as pHash, PDQ, and PhotoDNA, using LPIPS and L2 as
visual loss constraints can achieve a 100% attack success rate.

Notably, using LPIPS as the visual loss typically allows the
attack to be completed in less training rounds. For the deep
learning-based perceptual hashing algorithm NeuralHash,
using L2 as the visual loss can increase the success rate of the
attack.

Results. Table 3 presents the results of our triggering reg-
ulation attack against perceptual hashing algorithms. The
Success Rate indicates the proportion of images that success-
fully collide in the hash space. Except for NeuralHash, all
attacks achieved a 100% success rate. We also provide the
visual distance between the original image X and the corre-
sponding attacked image X ′, calculated using both L2 and
LPIPS. L2 quantifies pixel-wise image changes, while LPIPS
is more aligned with human visual perception of differences.
Rounds represents the average number of optimization steps
performed before a hash collision occurs. For the PDQ algo-
rithm, on average, only 65 training rounds are required to
generate a hash collision below the baseline ∆d = 92, sig-
nificantly less than the 7k training rounds required by [38].
All perceptual hashing algorithms successfully complete the



Method PH Success Rate Time↓ Rounds↓ L2 Distance ↓ ∆d Hardware

Prokos PhotoDNA 90% 4.00h 20000 42.81 1800 5888-Core 1.5-GHz GPU
ATKSCOPES PhotoDNA 100% 0.50h 1518 95.57 1800 6-Core 3.0-GHz CPU

Prokos PDQ 100% 0.10h 600-6000 77.62 90 36-Core 2.1-GHz CPUs
ATKSCOPES PDQ 100% 0.07h 65 76.60 90 12-Core 3.6-GHz CPU

Table 4: Comparison to prior work on PhotoDNA and PDQ.

PH γ c Success Rate LPIPS Distance↓ L2 Distance ↓ Time ↓ ∆d

PDQ 1 10 100% 0.42 86.2 0.07h 92
PDQ 1 100 100% 0.43 86.5 0.06h 92
PDQ 0.1 10 100% 0.29 79.2 0.75h 92
PDQ 0.1 100 100% 0.30 79.2 0.71h 92

Table 5: Triggering regulation attack against PDQ with different γ and c values

attack within 1k training rounds. The attack progression is
shown in Figure 8. Additionally, we show the attacked im-
ages generated using LPIPS and L2 as visual loss constraints,
as depicted in Figure 7.

5.4 Comparison to Prior Work

To prevent the source code from being exploited by malicious
actors to compromise the legitimate rights of child protection
agencies and related software users, previous research [17,38]
closely related to ours chose not to disclose their source code.
Therefore, we decide to compare with [38], which uses a
more detailed description of attack effects.

We conduct the triggering regulation attack on PhotoDNA
and PDQ, setting the thresholds at 1800 and 92, respectively,
consistent with the experimental setup of Prokos et al. [38].
As shown in Table 4, our ATKSCOPES achieves less attack-
ing time and training rounds, with less powerful hardware,
implying clear efficiency gains. Attackers can use the most
common and low-cost equipment, i.e. the single CPU of a
personal computer, to carry out effective attacks. More impor-
tantly, the time cost of attacking each image is low enough – as
for [38], 4 GPU hours for just one image, it is too long under
realistic considerations. In addition, for attacks on PhotoDNA,
our method achieves a 10% higher success rate compared
to the approach proposed in [38], reaching a 100% attack
success rate.

We should highlight that efficiency is not an irrelevant fac-
tor, it is closely related to the security of E2EE-PHM. In
reality, the cost of an attack is always finite – a more effi-
cient attack means that the training converges more easily, the
probability of a successful attack is higher at fewer training
rounds, larger scale attacks are possible, and cheap hardware
can enable attacks as well.

5.5 Trade-offs Between Visual Quality and At-
tack Effectiveness

In this paper, we pay more attention to attack effectiveness
(i.e., success rates and efficiency), as our purpose is to re-
veal vulnerabilities and their practical feasibility. We must
acknowledge that there is an inevitable trade-off between vi-
sual quality and attack effectiveness in adversarial attacks.
Improving visual quality typically means reducing the inten-
sity of the adversarial perturbations, which may affect the
success rate or efficiency of the attack. On the other hand, pur-
suing higher attack success rate or efficiency often requires
stronger perturbations, which can lead to a decrease in visual
quality.

In this regard, we offer two adjustable parameters, learning
rate γ and loss function weight factor c. As shown in Table
5, we perform triggering regulation attacks against PDQ with
different γ and c values. Here, γ is related to the step size for
each update of the perturbation, where smaller γ implying a
tendency to find the solution in a small neighborhood (and
therefore better visual quality); c is related to the ratio of
the visual loss to the total loss, where smaller c implying a
tendency to visual quality in finding the solution.

6 Possible Countermeasures and Recommen-
dations for Social Good

From our technical insights, we discuss the following possible
countermeasures and recommendations for social good - they
can be used together.

• Fundamentally improving the representation robust-
ness. The most straightforward idea is to force the hash-
ing to rely on more robust features. First, symmetry pri-
ors are introduced to enable a principled design of rep-
resentations that achieve invariance to given forms of



perturbations. For example, representation redesign with
geometric deep learning [6] or functional continuity [52]
for invariance of basic geometric or signal transforma-
tions. Then, heuristic data preprocessing can force rep-
resentations to describe more robust image features. For
example, data preprocessing with simple smoothing fil-
tering [30] or learned restoration network [56] partially
destroys the perturbation pattern before extracting fea-
tures. Finally, adversarial training [13] of the represen-
tation network can empirically enhance its robustness.
For example, introducing training samples generated
by ATKSCOPES for NeuralHash is a quick remedia-
tion [47].

• Introducing more complexity into the system. We note
that efficient attacks are largely based on the simplici-
ty/transparency of E2EE-PHM systems. Increasing the
system complexity can enlarge the solution space for an
attack to a computationally impractical level. A straight-
forward idea is to use more complex representations,
such as larger feature sets, hierarchical representation
designs, ensemble of heterogeneous representations, and
sophisticated mappings from feature to hash. Another
idea seeks confidentiality or randomization mechanisms
with computational hardness assumption as a stronger
remediation of adversarial vulnerabilities. This crypto-
graphic strategy is often used in cyberspace security [46],
for example, we can randomly select features in a large
feature set for matching – the attack difficulty will de-
pend on the size of the large feature set and the selected
set.

• Developing perturbation detectors as data prepro-
cessing. We can also develop perturbation detectors to
determine whether the user-uploaded image has been per-
turbed. Since they work in a preprocessing form, such
detectors can be easily combined with existing E2EE-
PHM systems as a quick remediation of adversarial vul-
nerabilities. This idea has been proven effective in foren-
sic research [58], for example, we can train a forensic
network to learn discriminative properties between the
natural and adversarial distributions, over a large set of
natural images and their perturbed versions.

7 Expansion to Other Media Types

In this paper, we only discuss images as a typical me-
dia for E2EE-PHM. As our future work, the algorithm of
ATKSCOPES can be extended almost directly to video sce-
narios, and the core idea of multiresolution perturbation has
potential in other media such as audio.

Regarding the video, hashing methods generally extract
features from video frames, followed by a fusion for a global
hash [9, 51]. Moreover, existing adversarial attacks of video

hashing act also on the pixel scale of video frames [4, 18].
Therefore the main motivation and implementation algorithm
of this paper holds for video hashing – adding multiresolution
perturbations to video frames is expected to exhibit similar
attack gains.

Regarding other media such as audio, our algorithm does
not work directly, but core idea of multiresolution perturba-
tion is still useful as the multiscale structure of the data is
almost universal [49]. For audio – although adversarial at-
tacks on audio hashing have yet to appear [36] – we consider
a one-dimensional version of Definition 1, by introducing a
family of one-dimensional orthogonal functions. Then the
main motivation and implementation algorithm of this paper
will hold for audio, with possible effective attacks.

8 Conclusion

In this paper, we have systematically revealed the adversarial
vulnerability of worldwide E2EE-PHM platforms, with po-
tentially serious social implications. Unlike previous attacks
at top-tier security conferences, our attack is a more realis-
tic threat – uniformly fooling the famous pHash, Facebook
PDQ, Microsoft PhotoDNA, and Apple NeuralHash, even with
higher success rates and less training times, under both sce-
narios of escaping and triggering regulation (Formulations 1
and 2).

• At the technical level, we have proposed ATKSCOPES
of multiresolution perturbation. With its formalized de-
sign (Definition 1), each perturbation element can affect
image regions of adjustable scales – from the pixel scale
(Example 2), to the mid scale (Example 3), and to the
global scale (Example 1). Here, ATKSCOPES encapsu-
late previous pixel-scale-only attacks [14, 17, 29, 38]
as special cases. Moreover, ATKSCOPES exhibit a huge
leap in efficiency (Table 4 and Figure 8), compared to
previous attacks with mismatched scales by Prokos et al.
[38] (Section 5.4).

• At the practical level, we have achieved uniform, fast,
and successful adversarial attacks as realistic threats to
4 commercial hashing algorithms in 2 scenarios (Sec-
tion 5.3). From our technical insights, we have also dis-
cussed possible countermeasures and recommendations,
i.e., fundamentally improving the representation robust-
ness, introducing more complexity into the system, and
developing perturbation detectors as data preprocessing
(Section 6).

9 Ethical Considerations

Perceptual hashing is a crucial tool for regulating image con-
tent that violates basic human rights. Our study reveals poten-
tial vulnerabilities of such hashing techniques, exploring the



feasibility for escaping or triggering regulation. Intuitively,
there is an ethical risk that our attack methods could be mis-
used by malicious actors. On the other hand, the security
community has long argued that openness and adversarial
scrutiny are essential for ensuring the correct operation of sys-
tems, maintaining that “security by obscurity” is a fragile and
ineffective approach to protecting high-value systems. This is
because, without disclosing these vulnerabilities, the indus-
try is often reluctant to invest in improvements. Therefore,
the benefits of conducting this analysis to enhance security
and resilience outweigh the potential risks associated with
disclosing our findings.

To minimize potential ethical risks, we have implemented
the following measures.

• Technical countermeasures. From our findings, we of-
fer possible technical countermeasures: 1) fundamentally
improving the representation robustness, 2) introduc-
ing more complexity into the system, and 3) developing
perturbation detectors as data preprocessing. We will
disclose our vulnerability findings, technical counter-
measures, and source code to the relevant stakeholders,
e.g., Apple, Facebook, and Microsoft, with the hope of
collaborating on more robust E2EE-PHM systems.

• Remediation period. We set a remediation period for
responsible disclosure practices. During this period, we
will contact the relevant stakeholders with all necessary
materials to repair the E2EE-PHM vulnerabilities, be-
fore an adversary gains the attack capability. During
this period, our paper itself contains no sufficient imple-
mentation details, and the source code is only available
to identified reviewers. After this period, we are will-
ing to disclose the source code completely so that other
researchers can validate and build upon it.

• Wellbeing for team members. Although our research
focuses on the regulation of image content that violates
basic human rights, we did not use any illegal images,
such as child pornography, terrorism, drugs, and violent
crime, during the study. This is because harmless images
are equivalent to illegal images in terms of their E2EE-
PHM processing. Therefore, our study does not pose any
psychological harm to team members.

10 Compliance with the Open Science Policy

We have established a remediation period for respon-
sible disclosure practices. After this period, we will
make our source code publicly available on Zenodo
https://zenodo.org/records/14633971, enabling other re-
searchers to reproduce our work. To facilitate the reproduction
process, the following artifacts will be provided:

• The dataset used in the experiments of this paper.

• The pHash, PDQ, PhotoDNA, and NeuralHash models.

• The LPIPS model for measuring perceptual image simi-
larity.

• Executable Python files for escaping and triggering reg-
ulation attacks on pHash, PDQ, PhotoDNA, and Neural-
Hash.

• Readme files with instructions to run the attacks.
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Appendix
In this section, we will introduce the working schemes of

the four perceptual hashing algorithms used in this paper.
pHash first resizes the image to 32×32 and applies a

grayscale transformation to convert it to a grayscale image.
Then it applies the Discrete Cosine Transform (DCT) to the
image and uses the first 8×8=64 low-frequency DCT coef-
ficients to compute the DCT hash. Finally, it calculates the
median of the DCT coefficients and generates a binary hash
string based on whether each DCT frequency is above or
below the median.
PhotoDNA [32] was invented by Microsoft Research and

Dartmouth College in 2009, with the goal of combating child
exploitation in collaboration with the National Center for
Missing and Exploited Children (NCMEC). While the de-
tailed implementation of PhotoDNA has not been officially
published, a more comprehensive algorithm description can
be pieced together from partial descriptions by Microsoft and
information obtained through reverse engineering [24, 25].

In 2020, researchers [19, 20] extracted the binary imple-
mentation of PhotoDNA from forensic software . According
to Krawetz [24], PhotoDNA first resizes the image to 26×26
pixels and converts it to grayscale. These pixels are then di-
vided into overlapping 6×6 "grids", allowing the algorithm to
produce nearly identical hashes even if the image is cropped
by approximately 2%. Each "grid" is processed using the So-
bel operator, which generates its hash code. The hash code
of each grid is a 4-tuple representing the sums of the Sobel
outputs to the left, right, up, and down. The final hash consists
of 36 "grids" of 4-tuples, with a total length of 144. Unlike
other Perceptual hash algorithms, the 144 hash codes output
by PhotoDNA are integers ranging from 0 to 255.
PDQ [11]was introduced by Facebook in 2019 with the

aim of developing photo and video matching technologies to
enhance internet security.
PDQ first normalizes the brightness data of input images

and then downsamples the images to 64×64 pixels using two
Jarosz filters. Subsequently, it applies Discrete Cosine Trans-
form (DCT) to the preprocessed images and selects the low-
frequency DCT coefficients of the top 16×16 block, which
capture the main features of the images. For each 16×16
block in the output hash, PDQ outputs 1 if the correspond-
ing DCT coefficient is greater than the median, otherwise it
outputs 0. The final output digest is a 256-bit binary string.
NeuralHash [2] was proposed by Apple in 2021 to ac-

curately detect and report known child sexual abuse material
(CSAM) in iCloud Photos accounts of their iCloud users. The
system generates NeuralHash in two steps. First, an image
is input into a convolutional neural network (CNN) which ex-
tracts visual features and encodes them into an N-dimensional
feature vector, an abstract numerical interpretation of the im-
age’s characteristic features. Next, locality-sensitive hashing
(LSH) is used to assign close feature vectors to buckets with
similar hash codes. The feature vectors are transformed by
computing the product of the hashing matrix and the embed-
ding. The real-valued vector is then converted to a bit vector
using the Heaviside step function, producing a 96-bit binary
hash vector.
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