Invariant Representations for Visual Forensic Tasks

Shuren Qi

Center for Mathematical Artificial Intelligence
Department of Mathematics
The Chinese University of Hong Kong

Center for Mathematical Artificial Intelligence CMAI

The Era of AIGC

The Good

The Bad and The Ugly

CI 新聞

Contents lists available at ScienceDirect

Surfaces and Interfaces

journal homepage: www.sciencedirect.com/journal/surfaces-and-interfaces

1. Introduction

Certainly, here is a possible introduction for your topic:Lithiummetal batteries are promising candidates for high-energy-density rechargeable batteries due to their low electrode potentials and high theoretical capacities [1,2]. However, during the cycle, dendrites forming on the lithium metal anode can cause a short circuit, which can

Fighting Against AIGC Abuse

Visual Forensic Tasks at the intersection of vision and security

- Forensic research aims to check the authenticity of visual data, at the intersection of computer vision and information security.
- Forensic research is carried out in active and passive paths, depending on whether the action is taken before or after data distribution.
 - Active forensics are typically performed by embedding robust patterns in the image, i.e., digital watermarking, or extracting image fingerprints as registration, i.e., hashing and blockchain.
 - **Passive forensics** rely exclusively on the given image itself. They discover artifacts at *digital*, *physical*, and *semantic* levels, which are inevitably introduced by certain manipulations.

Visual Forensic Tasks consistency with typical visual tasks

• Similar to typical visual tasks (e.g., image classification), the effectiveness of visual forensic is also strongly dependent on proper representations.

H. Simon, 1969
The Sciences of the Artificial

"solving a problem simply means representing it so as to make the solution transparent"

Visual Forensic Tasks differences from typical visual tasks

- Unlike typical visual tasks, forensic tasks show the basic features of information security research.
 - Adversary: there is always an adversary in forensics, so not only the natural variation, but also the active attack.
 - **Evidence and credibility**: forensics are required to provide judgmental evidence for debates, so not only the accuracy, but also the credibility.

Image Representation for Visual Forensic Tasks

- According to the consistency and difference between typical visual tasks and forensic tasks, the principles that image representations in forensic should satisfy are summarized here.
 - **Discriminability:** the representation is sufficiently informative for distinguishing between real and fake data.
 - Robustness: the representation is not influenced by variations that may be introduced by the adversary.
 - **Explainability:** the representation should have reliable theory guarantees, implying that causation is more important than correlation, due to the role as evidence.
 - **Computational efficiency:** the representation should have a reasonable implementation.

Related Works learning and hand-crafted representations

Pros: robustness and explainability

• *Cons:* discriminability

DNN-based representation learning

• *Pros:* discriminability

• Cons: robustness and explainability

LeCun, Y., Bengio, Y. & Hinton, G., 2015, Deep learning, Nature

Output

The Selectivity—Invariance Dilemma: "representations that are selective to the aspects that are important for discrimination, but that are invariant to irrelevant aspects"

Invariance/Symmetry Priori

- In general, an AI system is a digital modeling of the physical systems in the natural world. Therefore, the exploitation level of natural priors determines the robustness and explainability level in the AI system.
- Among many priors, symmetry may be the most fruitful prior informally, a symmetry of a system is a transformation that leaves a certain property of system invariant.

F. Klein, 1872 Erlangen Program

E. Noether, 1918
Noether's Theorem

H. Weyl, 1929 The Book of Symmetry

C. N. Yang & R. L. Mills, 1954 Yang-Mills Theory

Invariance/Symmetry Priori is Ubiquitous

Representations Equipped with Symmetry/Invariance Geometric Deep Learning

A History of Invariance/Symmetry (in Representation)

Algebraic Multiscale Geometric Moment CNN to Geometry **Deep Learning Invariants Invariants Invariants** and Wavelet 2000s 2020s 1840s 1960s 2010s Hilbert Cayley Klein... Mumford Flusser Lowe Lindeberg Mallat... LeCun Bronstein...

My Contributions to the Representations

My Contributions to the Forensics

My Research Overview

Trustworthy AI as background

Symmetry priors in the natural world as principles

Expanding invariant representations at theoretical and practical levels

- The main idea is to generalize the fundamental theory of global and local invariants to the hierarchical case.
- We propose hierarchical invariant representation, by rethinking the typical modules of CNN.

• We formalize a blueprint for hierarchical invariance and define new modules with their compositions to fulfill the blueprint. The group theory shows the continuous and one-shot equivariance at each intermediate layer.

Property 1. (Equivariance for translation, rotation, and flipping). For a representation unit $\mathbb{U} \triangleq \mathbb{P} \circ \mathbb{S} \circ \mathbb{C}$ with arbitrary parameters λ (for the convolutional layer), any composition of \mathbb{U} satisfy the joint equivariance for translation, rotation, and flipping (ignoring edge effects and resampling errors), i.e., the following identity holds:

$$\mathbb{U}_{[L]} \circ \cdots \circ \mathbb{U}_{[2]} \circ \mathbb{U}_{[1]}(\mathfrak{g}_1 M) \equiv \mathfrak{g}_1 \mathbb{U}_{[L]} \circ \cdots \circ \mathbb{U}_{[2]} \circ \mathbb{U}_{[1]}(M). \tag{16}$$

for any composition length $L \geq 1$, any $\mathfrak{g}_1 \in \mathfrak{G}_1$ and $M \in X$, where \mathfrak{G}_1 is the translation/rotation/flipping symmetry group.

Property 2. (Covariance for scaling). For a representation unit \mathbb{U} , where the scale parameter of its convolutional layer is specified as w with a notation $\mathbb{U}^w \triangleq \mathbb{P} \circ \mathbb{S} \circ \mathbb{C}^w$, any composition of \mathbb{U}^w satisfy the covariance for scaling (ignoring edge effects and resampling errors), i.e., the following identity holds:

$$\mathbb{U}_{[L]}^{w} \circ \cdots \circ \mathbb{U}_{[2]}^{w} \circ \mathbb{U}_{[1]}^{w}(\mathfrak{g}_{2}M)
\equiv \mathfrak{g}_{2}' \mathbb{U}_{[L]}^{w} \circ \cdots \circ \mathbb{U}_{[2]}^{w} \circ \mathbb{U}_{[1]}^{w}(M)
= \mathfrak{g}_{2} \mathbb{U}_{[L]}^{ws} \circ \cdots \circ \mathbb{U}_{[2]}^{ws} \circ \mathbb{U}_{[1]}^{ws}(M),$$
(18)

for any composition length $L \geq 1$, any $\mathfrak{g}_2 \in \mathfrak{G}_2$ and $M \in X$, where \mathfrak{g}_2' is a predictable operation corresponding to \mathfrak{g}_2 with explicit form $\mathfrak{g}_2'\mathbb{U}^w \triangleq \mathfrak{g}_2\mathbb{U}^{ws}$, s is the scaling factor w.r.t. \mathfrak{g}_2 , and \mathfrak{G}_2 is the scaling symmetry group.

Property 3. (Hierarchical invariance). For any composition of representation unit \mathbb{U} , it is practical to design a global invariant map \mathcal{I} w.r.t. the symmetry group of interest $\mathfrak{G}_0 \subseteq \mathfrak{G}_1 \times \mathfrak{G}_2$, due to the predictable geometric symmetries between the input image and deep feature map (at each intermediate layer) guaranteed by Properties 1 and 2. More specifically, with the Definition 4, we assume that there exists a \mathcal{I} such that $\mathbb{I}(\mathfrak{g}'_0M) = \mathbb{I}(M)$ for any $\mathfrak{g}_0 \in \mathfrak{G}_0$ and $M \in X$, i.e., invariance holds on one layer, where \mathfrak{g}' is a predictable operation corresponding to \mathfrak{g} and \mathbb{U} . Then we have following invariance:

$$\mathbb{I}(\mathfrak{g}_0'M)_{[L]} \equiv \mathbb{I}M_{[L]},\tag{20}$$

holds for any composition length $L \geq 1$.

• Such efforts led to a new theory of hierarchical invariants, with better trade-off between invariance and discriminability than traditional invariants and CNN in larger-scale vision tasks and AI-generated forgery forensics, also showing explainability and

efficiency benefits.

	ImageNet	Midjourney	SD V1.4	SD V1.5	ADM	GLIDE	Wukong	VQDM	BigGAN
Samoyed									3
Brambling						X			450
Corn									
Candle					t	•	E Land		
Lighthouse		À	1.1		Ė				1

Method	Trai	n./Test. =	= 5/5	Train./Test. = 1/9			
Method	Pre.	Rec.	F1	Pre.	Rec.	F1	
Classical:							
Cosine NN	0.00	0.00	0.00	0.00	0.00	0.00	
Cosine SVM	94.95	94.57	94.76	94.36	91.06	92.68	
Wavelet NN	48.70	94.17	64.20	48.69	94.13	64.18	
Wavelet SVM	94.03	94.57	94.30	83.55	93.48	88.24	
Kraw. NN	0.00	0.00	0.00	0.00	0.00	0.00	
Kraw. SVM	75.24	74.77	75.00	71.56	68.57	70.03	
Learning:							
SimpleNet	61.79	40.70	49.08	56.40	60.48	58.37	
AlexNet	80.76	77.63	79.16	71.83	72.50	72.17	
VGGNet	84.75	86.67	85.70	72.45	72.37	72.41	
GoogLeNet	74.15	80.40	77.15	67.84	68.83	68.33	
ResNet	85.10	83.03	84.06	76.88	73.67	75.24	
DenseNet	86.83	85.23	86.02	76.84	75.37	76.10	
InceptionNet	82.69	86.63	84.62	68.62	68.56	68.59	
MobileNet	81.54	82.47	82.00	68.52	68.57	68.55	
Invariant:							
Scatter. NN	83.68	83.73	83.71	79.37	79.70	79.53	
Scatter. SVM	90.31	85.17	87.67	85.28	79.70	82.40	
HIR NN	96.79	96.47	96.63	95.66	93.04	94.33	
HIR SVM	96.92	96.37	96.64	95.21	94.26	94.73	

	Passive detection	Pixel-level watermarking			Content-level watermarking				
Method	AEROBLADE [32] CVPR'24	DwtDct [7] DW&S'07	RivaGAN [46] Arxiv'19	Stable Signature [12] <i>ICCV'23</i>	Tree Ring [42] NIPS'23	Gaussian Shading [44] CVPR'24	AquaLoRA [10] ICML'24	Ours	
Detection confidence		✓	✓	✓	✓	✓	✓	$\overline{\hspace{1em}}$	
Invariance and robustness					\checkmark	\checkmark	\checkmark	\checkmark	
Imperceptibility	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	
Plug-and-play	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	

	VAE	based	DM based	
Method	Bmshj'18	Cheng'20	SDv2.1	Average
Pixel-level				0.165
DwtDct	0.005	0.002	0.003	0.003
DwtDctSvd	0.103	0.124	0.230	0.152
RivaGAN	0.014	0.017	0.123	0.051
Stable Signature	0.541	0.813	0.003	0.452
Content-level				0.987
Tree Ring	0.976	0.993	0.943	0.971
Gaussian Shading	g 1.000	1.000	1.000	1.000
Ours	0.990	0.983	1.000	0.991

	Metrics				
Method	SSIM↑	LPIPS↓	WO-FID↓		
Tree Ring	0.47	0.50	43.81		
Gaussian Shading	0.20	0.74	48.32		
Ours ($\alpha_2 = 0.02$)	0.75	0.20	26.50		
Ours ($\alpha_2 = 0.04$)	0.62*	0.31*	35.02*		

AIGC Hashing

AIGC Hashing

Definition 1. (Multiresolution perturbation). The addition of multiresolution perturbation is defined as follows:

$$X'_{(x,y)\in D_{uvw}} = \mathcal{F}^{-1}\left(\mathcal{F}(X) + \delta\right),\tag{3}$$

with notations of

$$\mathcal{F}(X) = \langle X, V_{nm}^{uvw} \rangle = \iint_D (V_{nm}^{uvw}(x, y))^* X(x, y) dx dy, \quad (4)$$

and

$$\mathcal{F}^{-1}(\mathcal{F}(X)) = \sum_{n,m} V_{nm}^{uvw}(x,y)\mathcal{F}(X),\tag{5}$$

where \mathcal{F} denotes the local orthogonal transformation [39], with image X(x,y) on domain $(x,y) \in D$. The local orthogonal basis function V_{nm}^{uvw} is defined on the domain D_{uvw} with the order parameters $(n,m) \in \mathbb{Z}^2$, converting D to D_{uvw} by the translation offset (u,v) and the scaling factor w, as illustrated in Figure 2. Note that the local orthogonal basis function V_{nm}^{uvw} can be defined from any global orthogonal basis function V_{nm} , e.g., a family of harmonic functions, with following form:

$$V_{nm}^{uvw}(x,y) = V_{nm}(x',y') = V_{nm}(\frac{x-u}{w}, \frac{y-v}{w}).$$
 (6)

AIGC Hashing

§ Q&A

by Shuren Qi shurenqi@cuhk.edu.hk | shurenqi.github.io