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Tutorial OQutline

Part 1: Background and challenges (20 min)

Part 2: Preliminaries of invariance (20 min)

Q&A / Break (10 min)

Part 3: Invariance in the era before deep learning (30 min)

Part 4: Invariance in the early era of deep learning (10 min)

Q&A / Coffee Break (30 min)

Part 5: Invariance in the era of rethinking deep learning (50 min)

Part 6: Conclusions and discussions (20 min)
Q&A (10 min)

A Historical Perspective of Data Representation
Rethinking Deep Learning with Invariance: The Good, The Bad, and The Ugly



