
Tutorial Outline

• Part 1: Background and challenges (20 min)

• Part 2: Preliminaries of invariance (20 min)

• Q&A / Break (10 min)

• Part 3: Invariance in the era before deep learning (30 min)

• Part 4: Invariance in the early era of deep learning (10 min)

• Q&A / Coffee Break (30 min)

• Part 5: Invariance in the era of rethinking deep learning (50 min)

• Part 6: Conclusions and discussions (20 min)

• Q&A (10 min)

Rethinking Deep Learning with Invariance: The Good, The Bad, and The Ugly 

A Historical Perspective of Data Representation 



Invariance in The Era Before Deep Learning 

• In the era before deep learning, data representations were almost always designed by 
experts manually, driven by knowledge in math, physics, signal processing, and 
computer vision. 

• Depending on the spatial scope of the action, these representations can be classified as 
global, locally sparse and locally dense. Such assumptions are different and lead to 
different realizations of invariance.

Original Image Global Representation Locally Sparse  
Representation

Locally Dense  
Representation

• K Mikolajczyk, C Schmid. A performance evaluation of local descriptors. TPAMI, 2005.



Global Representations: Fourier Transform

• Fourier Transform is a tool that rewrite a (continuous and smooth) function as a 
(coefficient-weighted) sum of sine/cosine functions.



Global Representations: Fourier Transform

• Image, as a 2D function, can also be rewritten as a sum of 2D sine/cosine functions:
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𝑢1 = 1, 𝑢2 = 0 𝑢1 = 0, 𝑢2 = 2 𝑢1 = 1, 𝑢2 = 1

……



So, How About Invariance?



Translation Invariance of Fourier Transform

• Translating the function leads to multiplying the Fourier transform by a phase factor:

• As a consequence, the absolute values of Fourier transform are invariant to translation.

Translation on Position

Fourier Spectrum Invariant 



Can Global Invariance Be Generalized To Other 
Geometric Transformations?



Global Representations: Moment Invariants

• Moment Invariants are similar to Fourier transforms in that they also rewrite the 
function as a (coefficient-weighted) sum of basis functions, but with a different 
purpose — more generalized invariants.

J. Flusser, B. Zitova, & T. Suk, 2009
Moment Invariants

• J. Flusser, B. Zitova, T. Suk. Moments and Moment Invariants in Pattern Recognition. John Wiley & Sons, 2009.



Moments as a Generic Form of Global Representation 

• Fundamentally, moments have a very simple definition, and is in fact a generic form of 
the global representation: 

• Here, the core is how such basis functions 𝜋 are designed so that more generalized 
invariants 𝐼 can be derived from the corresponding moments 𝑀 by a certain cancelation 
𝜔 .
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• J. Flusser, B. Zitova, T. Suk. Moments and Moment Invariants in Pattern Recognition. John Wiley & Sons, 2009.



Geometric Transformations and Geometric Moments 

• Let us consider the basic geometric transformations, including translation, rotation and 
scaling, which can be modeled as: 

• We can also define the so-called geometric moments with very simple basis functions:

• J. Flusser, B. Zitova, T. Suk. Moments and Moment Invariants in Pattern Recognition. John Wiley & Sons, 2009.



Translation and Scaling Invariants

• With the above definitions, translation invariants 𝜇 can be derived from the geometric 
moments: 

• where (𝑥𝑐 , 𝑦𝑐 ) should be considered as the centroid of the image. The invariance is 
achieved by aligning the coordinate origin of the basis functions with the centroid.

• Let us further consider scaling invariants 𝜈, which again can be derived from geometric 
moments, by normalizing the scaling factor on moments:

• J. Flusser, B. Zitova, T. Suk. Moments and Moment Invariants in Pattern Recognition. John Wiley & Sons, 2009.



Rotation Invariants by Hu and Hilbert

• Are rotation invariants 𝜙 equally derivable from geometric moments? Yes, Hu gives 7 
invariants based on Hilbert's algebraic invariants, which seems very complex. But it 
makes sense, due to the nonlinear action of the rotations on 𝑥 and 𝑦.

D. Hilbert, 1897
Algebraic Invariants

• MK Hu. Visual pattern recognition by moment invariants. TIT, 1962.



Rotation Invariants by Zernike

• Can rotation invariants be derived more simply? Let us define the basis functions in 
polar coordinates, where the effects caused by rotations are more easily managed, by 
leveraging the translation theorem of the Fourier transform in an angular form.

• In this respect, Zernike polynomials are typical — they are complete orthogonal bases 
on the unit circle and easily realize rotation invariance, from Zernike's optical research.

F. Zernike, 1934
Zernike Polynomials

• A Khotanzad, YH Hong. Invariant image recognition by Zernike moments. TPAMI, 1990.
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Refining Global Invariants

• We give papers on the practical aspects of moments for refining global invariants, 
covering numerical analyses, software implementations, benchmark evaluations, and 
recent advances.

• S. Qi, Y. Zhang, C. Wang, et al. A Survey of Orthogonal 

Moments for Image Representation: Theory, 

Implementation, and Evaluation. ACM Computing 

Surveys (CSUR), 2023, 55(1): 1-35.

• S. Qi, Y. Zhang, C. Wang, et al. Representing Noisy 

Image Without Denoising. IEEE Transactions on Pattern 

Analysis and Machine Intelligence (TPAMI), 2024, 46(10): 

6713 - 6730

https://github.com/ShurenQi/MomentToolbox

https://github.com/ShurenQi/MomentToolbox


From Global To Local



Why We Need Local Representations

• Fourier transform-like global representations are typically (under)-complete and are just 
designed for low-level processing, struggling to express high-level semantics with over-
completeness.

• As a toy example, the Fourier transform cannot even distinguish the order in which the 
two signals appear.

FT FT

• AV Oppenheim, JS Lim. The importance of phase in signals. Proceedings of the IEEE, 1981.



Why We Need Local Representations

• Under realistic considerations, there are too many tasks concerned with local semantic 
properties — recognition and classification (distinguishing images of cats and dogs), 
where global representations are likely unable to provide enough information to 
support discriminability.



Local Representations: Wavelet Transform

• Different from Fourier, basis functions of Wavelet Transform are local and multi-scale.

S. Mallat, 1999
Wavelets

Fourier Wavelets

• S Mallat. A Wavelet Tour of Signal Processing. Elsevier, 1999.



Local Representations: Wavelet Transform

• Wavelet transform can capture local information, with better discriminative 
properties — time-frequency discriminability and over-completeness.

Original Image Wavelet RepresentationsFourier Representations



So, How About Invariance?



Translation Equivariance of Wavelet Transform

• The wavelet basis functions define convolution operators 𝑔 — the wavelet transform of 
an image 𝑓 means the convolution of 𝑓 and 𝑔. Therefore, the wavelet transform has a 
translation equivalence with the convolution.

Wavelet Convolutional Operators 𝑔

∗ 𝑔

𝜏𝑥

𝜏𝑥

𝑓

∗ 𝑔

(𝜏𝑥𝑓) ∗ 𝑔 = 𝜏𝑥(𝑓 ∗ 𝑔)



Can Local Invariance Be Generalized To Other 
Geometric Transformations?



Local Representations: SIFT

• The local and multiscale concepts of the wavelet transform were followed by later local 
representations.

• For example, the well-known Scale-Invariant Feature Transform (SIFT) aims at the local 
invariance of rotation and scaling in multiscale spaces.

Matching images 
at different scales 
and orientations

• DG Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.



Local Representations: SIFT

• SIFT describes local regions that have their own scale and orientation, with the scale 
space theory as a foundation.

• Here, once the scale and orientation of the regions can be evaluated stably, then 
invariant features can be constructed by normalizing the scale and orientation.

D. Lowe, 1999
SIFT

T. Lindeberg, 1993
Scale Space Theory

• T Lindeberg. Scale-space Theory in Computer Vision. Springer Science & Business Media, 1993.



Local Representations: SIFT

• SIFT has two main components: detector and descriptor.

• The detector is responsible for finding the interest point with evaluated scale to achieve 
scaling invariance. The descriptor is responsible for describing the interest point with 
evaluated orientation to further achieve rotation invariance.

Detector
Scale is evaluated by finding the extreme in the scale space

Descriptor
Orientation is evaluated by computing the histogram of gradients

*



From Sparse To Dense



Why We Need Dense Representations

• SIFT-like interest points are sparse in the image and are designed to focus only on the 
main subject (ignoring all other regions).

• A Iscen, G Tolias, PH Gosselin, et al. A comparison of dense region detectors for image search and fine-grained classification. TIP, 2015.



Why We Need Dense Representations

• Under realistic considerations, there are too many tasks concerned with dense semantic 
properties — detection/localization (detecting lesions in CT images), fine-grained 
classification (distinguishing large-scale bird images), where sparse interest points are 
likely to miss potentially important local information.

Detection/Localization Fine-grained Classification 



Local Representations: DAISY

• DAISY aims to extend SIFT from sparse to dense, achieving local invariance of rotation 
and scaling for each pixel position.

• E Tola, V Lepetit, P Fua. Daisy: An efficient dense descriptor applied to wide-baseline stereo. TPAMI, 2009.



Local Representations: DAISY

• The main difficulty is that the complex operations of SIFT in scale and orientation 
evaluation cannot be performed directly for dense positions, due to high complexity.

• Therefore, DAISY introduces a series of simplified designs for scale and orientation, but 
at the same time invariance is reduced.

DAISY Descriptor Simplified Designs for Scale and Orientation
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Designing Local Invariants

• Reviewing the above local invariants, one can note a gap: SIFT is fast and invariant, but 
not suitable for dense tasks; DAISY is fast and dense, but largely compresses invariance. 

• We tried to define truly dense invariants while being fast enough. We achieved this goal 
by exploring the potential of classical moment invariants.

• S. Qi, Y. Zhang, C. Wang, et al. A Principled Design of 

Image Representation: Towards Forensic Tasks. IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence (TPAMI), 2023, 45(5): 5337 - 5354

Fast
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?
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• First, we extend the definition of classical moments from the global to the local with 
scale space. Here, local coordinate system (𝑥′, 𝑦′) is a translated and scaled version of 
the global coordinate system (𝑥, 𝑦), with translation offset (𝑢, 𝑣) and scale factor 𝑤.

• Two interesting properties: generic nature and local representation capability.

Local

Moments: From Global to Local 

Global
Our Transformations



• Then, we found the symmetry properties of the local definition for several geometric 
transformations.

• Therefore, rotation and flipping invariants can be obtained by taking the absolute values; 
translation and scaling invariants can be obtained by pooling over the (𝑢, 𝑣)/𝑤.

Moment Invariants: From Global to Local 

Translation Equivariance
w.r.t. (𝑢, 𝑣)

Rotation Invariance 
w.r.t. absolute values

Flipping Invariance 
w.r.t. absolute values

Scaling Covariance
w.r.t. 𝑤



vs

• Finally, we give a fast implementation by the convolution theorem.

vs

Fast Implementation


