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* Part 6: Conclusions and discussions (20 min)

A Historical Perspective of Data Representation
Rethinking Deep Learning with Invariance: The Good, The Bad, and The Ugly



Conclusion 1: A Historical Perspective of Invariance

A long history, from group theory, geometry, and physics
In the era before deep learning: cornerstone
» globally for the whole image (moment invariants), or locally for local parts of image (SIFT, DAISY, ...).

In the early era of deep learning: largely ignored

* CNN vs. perceptron.

In the era of rethinking deep learning: returned, geometric deep learning
* |ocally and hierarchically (CNN, equivariant CNN, equivariant NN for group set, graph... ).
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Conclusion 2: Rethinking Deep Learning by Invariance

* Robust, interpretable and efficient (representation) learning
* Perfect robustness, interpretable concept, and structural efficiency.
* CNN vs. perceptron on image data
* Translation equi/in-variance.
* Geometric Deep Learning

* For different transformations: wavelet scattering networks, group equivariant networks.

* For different architectures and data types: deep sets/pointnet, graph networks, transformers.
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Conclusion 3: Our Works for Invariance

Trustworthy Al as background
Symmetry priors in the natural world as principles

Expanding invariant representations at theoretical and practical levels
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Open Problem 1:
Exploring the Limits of Handcrafted Invariants

* The Good:
 Embedding knowledge; good interpretability, robustness, and efficiency.
* The Bad and The Ugly:
e Discriminability, adaptivity.
* Open Problem:
* Upper bound of discriminability?
e Data-driven learning, a must?
* If for a specific task, handcrafted invariants always sufficient?
* Research Opportunity:
* Overcomplete designs of invariants, e.g., time-frequency, multi-scale, hierarchical.

* Feature selection and explanation, from over-complete to task-discriminative.



Open Problem 2:
More Flexible Designs for Learning Invariants

* The Good:

* Discriminability, adaptivity.
* The Bad and The Ugly:

* Limited invariance, inefficient implementation, especially for joint invariance.
* Open Problem:

* Group convolution (symmetry sampling), uniformly good?

* Element-wise operations and global pooling, sufficient for graphs/sets?
* Research Opportunity:

* Continuous and high-order designs for local-equivariant and global-invariant
representations.

 Specific designs of equi/in-variance for different data types.



Open Problem 3:
Real-world Impact and Application Considerations

* The Good:
* Many low-level processing, some high-level tasks; Al for Science, e.g. AlphaFold.
* The Bad and The Ugly:
* Real-world impact in broader applications.
* Open Problem:
* Invariance, somewhat limit adaptivity?
* Invariance, designed for generic tasks?
* Research Opportunity:

* Designing high-performance invariants for specific tasks, i.e., specific data
assumptions and knowledges.

» Easy-to-use software, environment, and document.



There Is No Royal Road To Geometry
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e Q&A (10 min)

A Historical Perspective of Data Representation
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Q Thank you!
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