Tutorial Outline

- Part 1: Background and challenges (20 min)
- Part 2: Preliminaries of invariance (20 min)
- Q&A / Break (10 min)
- Part 3: Invariance in the era before deep learning (30 min)
- Part 4: Invariance in the early era of deep learning (10 min)
- Q&A / Coffee Break (30 min)
- Part 5: Invariance in the era of rethinking deep learning (50 min)
- Part 6: Conclusions and discussions (20 min)
- Q&A (10 min)

A Historical Perspective of Data Representation Rethinking Deep Learning with Invariance: The Good, The Bad, and The Ugly

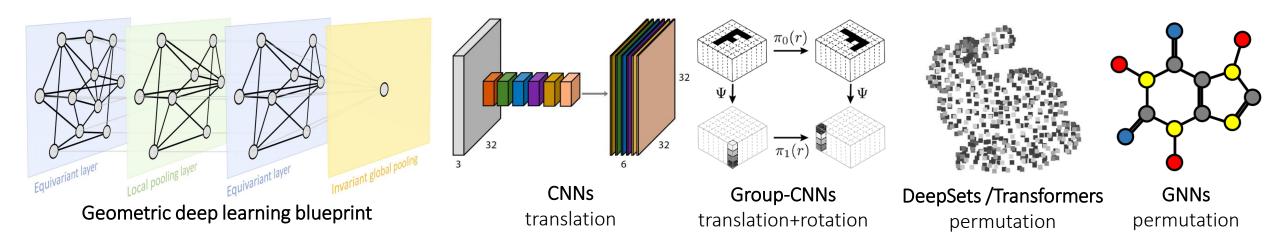
Conclusion 1: A Historical Perspective of Invariance

- A long history, from group theory, geometry, and physics
- In the era before deep learning: cornerstone
 - globally for the whole image (moment invariants), or locally for local parts of image (SIFT, DAISY, ...).
- In the early era of deep learning: largely ignored
 - CNN vs. perceptron.
- In the era of rethinking deep learning: returned, geometric deep learning
 - locally and hierarchically (CNN, equivariant CNN, equivariant NN for group set, graph...).

	Algebraic Invariants	Geometric Invariants	Moment Invariants	Multiscale and Wavelet	CNN to Geometry Deep Learning
	· ·				
	1840s	1960s	2000s	2010s	2020s
Hilb	ert Cayley Klein	Mumford	Flusser	Lowe Lindeberg Mallat	LeCun Bronstein

Conclusion 2: Rethinking Deep Learning by Invariance

- Robust, interpretable and efficient (representation) learning
 - Perfect robustness, interpretable concept, and structural efficiency.
- CNN vs. perceptron on image data
 - Translation equi/in-variance.
- Geometric Deep Learning
 - For different transformations: wavelet scattering networks, group equivariant networks.
 - For different architectures and data types: deep sets/pointnet, graph networks, transformers.

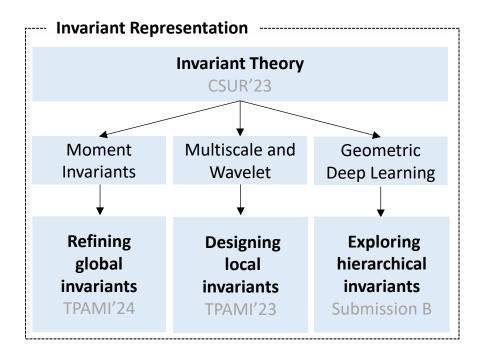


Conclusion 3: Our Works for Invariance

Trustworthy AI as background

Symmetry priors in the natural world as principles

Expanding invariant representations at theoretical and practical levels



Open Problem 1: Exploring the Limits of Handcrafted Invariants

• The Good:

• Embedding knowledge; good interpretability, robustness, and efficiency.

The Bad and The Ugly:

Discriminability, adaptivity.

Open Problem:

- Upper bound of discriminability?
- Data-driven learning, a must?
- If for a specific task, handcrafted invariants always sufficient?

Research Opportunity:

- Overcomplete designs of invariants, e.g., time-frequency, multi-scale, hierarchical.
- Feature selection and explanation, from over-complete to task-discriminative.

Open Problem 2: More Flexible Designs for Learning Invariants

The Good:

Discriminability, adaptivity.

The Bad and The Ugly:

Limited invariance, inefficient implementation, especially for joint invariance.

Open Problem:

- Group convolution (symmetry sampling), uniformly good?
- Element-wise operations and global pooling, sufficient for graphs/sets?

Research Opportunity:

- Continuous and high-order designs for local-equivariant and global-invariant representations.
- Specific designs of equi/in-variance for different data types.

Open Problem 3: Real-world Impact and Application Considerations

The Good:

• Many low-level processing, some high-level tasks; AI for Science, e.g. AlphaFold.

The Bad and The Ugly:

Real-world impact in broader applications.

Open Problem:

- Invariance, somewhat limit adaptivity?
- Invariance, designed for generic tasks?

Research Opportunity:

- Designing high-performance invariants for specific tasks, i.e., specific data assumptions and knowledges.
- Easy-to-use software, environment, and document.

There Is No Royal Road To Geometry

Tutorial Outline

- Part 1: Background and challenges (20 min)
- Part 2: Preliminaries of invariance (20 min)
- Q&A / Break (10 min)
- Part 3: Invariance in the era before deep learning (30 min)
- Part 4: Invariance in the early era of deep learning (10 min)
- Q&A / Coffee Break (30 min)
- Part 5: Invariance in the era of rethinking deep learning (50 min)
- Part 6: Conclusions and discussions (20 min)
- Q&A (10 min)

A Historical Perspective of Data Representation Rethinking Deep Learning with Invariance: The Good, The Bad, and The Ugly

§ Thank you!

by Shuren Qi

shurenqi@cuhk.edu.hk | shurenqi.github.io